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1 Abstract
In Artificial Intelligence (AI), a lot of problems can be represented as Constraint Satisfaction Problems (CSPs). We can find them in many fields of AI such as machine vision, belief maintenance, scheduling problems, temporal reasoning, graph-coloring problems, and so on. There are two categories of CSPs: binary CSPs and general CSPs. A binary CSP has only unary and binary constraints. A unary constraint restricts the value of one variable while a binary constraint restricts the value of two variables. A general CSP may have constraints that restrict more than two variables. Many algorithms have been developed to solve CSPs. Dynamic Backtracking is one of them. The main goal of this paper is to conduct a comprehensive survey of research work on Dynamic Backtracking and general CSPs. This survey also presents the background knowledge of CSP and some other basic CSP-solving techniques.
2 Introduction
2.1 Definition of CSP

One definition of CSP from (Russell and Norvig, 2003) is:
“A constraint satisfaction problem (or CSP) is defined by a set of variables, X1, X2, . . . , Xn, and a set of constraints, C1, C2, . . . , Cm. Each variable Xi has a nonempty domain Di of possible values.” 
Another definition from (Tsang, 1993) is:
“A constraint satisfaction problem is a triple: (Z, D, C)

where Z = a finite set of variables { X1, X2, . . . , Xn }.
D = a function which maps every variable in Z to a set of objects of arbitrary type.
C = a finite (possibly empty) set of constraints on an arbitrary subset of variables in Z.”

Other researchers have definitions with different representations, but they all contain the three key elements of CSP: variables, domains, and constraints. A solution to a CSP is an assignment of values to all variables that does not violate any constraints. A CSP may have one solution, more than one solution, or no solution.
2.2 Examples of CSP

There are many CSPs in different areas. For example, one well-known CSP is the 8-queens problem. A chess player named Max Bezzel originally proposed this problem in 1848. Over the years, many mathematicians and Computer Scientists have worked on the problem. The problem is to put eight queens on an 8X8 chessboard such that no two queens can attack each other. The 8-queens problem has 92 distinct solutions (12 solutions if not counting symmetry operations). 
One formalization of the 8-queens problem is by making each row a variable {V1, V2, . . . , V8}. The domain of each variable is one of eight columns {1, 2, . . . , 8}. The constraint of the 8-queens problem is “no two queens can attack each other”, which means that no two queens are on the same row, column, or diagonal. If we set V1=1, we cannot set V2=1 or V2=2. Another formalizations can be by representing a queen the same number of variables but a different domain {1, 2, . . . , 64}, which stands for 64 positions on the 8X8 chessboard.
Another well-known but harder CSP problem is the car sequencing problem. The goal of the problem is to find an optimal arrangement of cars along a production line, given production requirements, option requirements and capacity constraints. The detailed description can be found in (Tsang, 1993). Other famous examples are Crossword Puzzles, Map-Coloring problems, and so on.
3 Theory background
3.1 Binary and General CSPs

There are two categories of CSPs: binary CSPs and general CSPs. General CSPs are also called non-binary CSPs. A binary CSP has only unary and binary constraints. A unary constraint restricts the value of one variable while a binary constraint restricts the value of two variables. A general CSP may have constraints that restrict more than two variables. However, in (Rossi, Petrie, and Dhar, 1989), the authors claim that it is possible to convert any non-binary CSP to a binary CSP having the same solutions. 
3.2 Constraint Graphs
A binary CSP can be represented as an undirected graph. In the graph, the nodes stand for variables and the edges stand for binary constraints. A General CSP can be represented as a hypergraph. Graph theory had a significant influence on CSP research. 
3.3 Satisfiability and Consistency
Two fundamental concepts in CSP are satisfiability and consistency. According to (Tsang, 1993), “a compound label X satisfies a constraint C if and only if X is an element of C”. A compound label is an assignment of values to variables like (<Variable1, value1>, <Variable2, value2>, . . . , <VariableX, ValueX>). A constraint can also be viewed as a set of legal compound labels. Based on this simple definition of satisfiability, more related concepts are built such as satisfiable, k-satisfies, and k-satisfiable (Tsang, 1993).
Consistency is another essential concept in CSP. According to (Tsang, 1993), “a CSP is 1-consistent if and only if every value in every domain satisfies the unary constraints on the subject variable. A CSP is k-consistent, for k greater than 1, if and only if all (k-1) compound labels which satisfy all relevant constraints can be extended to include any additional variable to form a k-compound label that satisfies all the relevant constraints”. 
Satisfiability and consistency have a close relationship. They support many other important concepts and theorems in CSP research, for example, the concepts of node consistency (NC, same as 1-consistency), arc consistency (AC, same as 2-consistency), and path consistency (PC, same as 3-consistency in binary CSP). 
3.4 Partial solutions
Some CSPs are not solvable because they may be over-constrained, for example, industrial scheduling problems. This class of problems is called Partial Constraint Satisfaction Problems (PCSP). They can be transformed to relax problems and be solved.
3.5 Search ordering
Search ordering is one of the most fundamental factors that affects the efficiency of CSP-solving algorithms (Tsang, 1993). Search ordering includes ordering of both variables and values in their domains. 
4 CSP-solving techniques
4.1 General discussion
Modeling or representing a problem as a CSP is one area in CSP research. How to solve a CSP is another important area. Over thirty years, CSP researchers have developed different kinds of methods or algorithms that can solve CSPs.
(Tsang, 1993) classifies these techniques in CSP solving into three categories: problem reduction, search, and solution synthesis. Each category corresponds one chapter in his book. In the problem-reduction chapter, the author mainly talks about NC, AC, and PC algorithms. In (Russell and Norvig, 2003) problem-reduction methods are classified as constraint propagation methods. In the search chapter, Tsang introduces three categories of search strategies: general search strategies, lookahead strategies, and gather-information-while-searching strategies. Most of the CSP-solving algorithms can be found in this chapter such as Backtracking, Forward Checking, BackJumping, Backchecking, Backmarking, and so on. In the solution-synthesis chapter, the author mainly talks about GENET. In the rest chapters, the author introduces other important techniques like stochastic search.
In this section, firstly, two CSP algorithms are used as examples: backtracking and AC-3. Secondly, a lot of work about systematic and nonsystematic search are introduced. Thirdly, the performance of CSP solving techniques is discussed. The approach of dynamic backtracking (Ginsberg, 1993) is another CSP-solving algorithm. It is what this survey concerns, which will be described in a separate section.

4.2 Backtracking
The Backtracking algorithm is a fundamental CSP-solving algorithm, which is a base of many other algorithms. It was first formerly introduced by (Bitner and Reingold, 1975). However, the basic idea of Backtracking can be traced back to the 19th century. Furthermore, it is often compared with other algorithms to evaluate algorithms’ performance. Backtracking, or backtracking search, is a depth-first search. It is shown in Figure 1.
[image: image1.emf]
Figure 1 backtracking search (Russell and Norvig, 2003, p142)

4.3 AC-3 algorithm
One important class of CSP-solving algorithms is called “arc consistency” algorithms (Mackworth, 1977a). Achieving consistency is also called problem reduction (Tsang, 1993), problem relaxation, or constraint propagation. In (Montanari, 1974), the author introduces the concept of constraint networks and propagation using path consistency. This approach was popularized by (Waltz, 1975). By achieving certain consistency (NC, AC, or PC), the problem is reduced by eliminating redundant information from domains and constraints. In other words, “an arc consistency algorithm can be thought of as a simplification algorithm which transforms the original problem into a simpler version that has the same solutions” (Nadel, 1989). Consistency concepts are so defined to guarantee it. Another property of arc consistency mentioned in (Freuder, 1982) is that in any binary CSP, at the same time, its constraint graph can be represented as a tree, a backtrack-free search can be obtained if node and arc consistency are obtained.
NC, AC, and PC are different levels of consistency. In (Nadel, 1989), the author classifies AC algorithms into two categories: partial arc-consistency algorithms (AC
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) and full arc consistency algorithms (AC1, AC2, and AC3). In (Tsang, 1993), the author lists another AC algorithm: AC4. AC-3 (Mackworth, 1977a) as a widely-used algorithm:
[image: image6.emf]
Figure 2 AC-3 (Russell and Norvig, 2003, p146)

4.4 Systematic and nonsystematic search

In (Minton, Johnston, Philips, and Laird, 1990), the problem addressed by the authors is that meaningful progress is how to solve large-scale constraint satisfaction and scheduling problems. Three previous work referred to by the authors are (Stone and Stone, 1987), (Johnston and Adorf, 1989), and (Adorf and Johnston, 1990). The authors develop a new heuristic called the min-conflicts heuristic that captures the idea of GDS Network. The main idea of the min-conflicts heuristic is to minimize the number of conflicts by assigning a new value into the variable, which is in conflict. The authors do experiments by employing three search strategies (hill-climbing, informed backtracking, and best-first search) with the min-conflicts heuristic. They claim that min-conflicts hill-climbing and min-conflicts backtracking perform much better than basic backtracking on the n-queens problem. They also claim that the min-conflicts heuristic is less effective on problems like coloring sparsely-connected graphs. They state that these problems have a few highly-critical constraints and many less important constraints. Future work suggested by the author includes backtracking to older culprits and dependency pruning. This paper has been cited by many researchers, e.g. (Minton, Johnston, Philips, and Laird, 1992) and (Ginsberg, 1993).

After two years, the four authors presented another paper (Minton, Johnston, Philips, and Laird, 1992). They analyzed their min-conflicts heuristic. They claim that (Johnston and Adorf, 1989) and (Adorf and Johnston, 1990) inspired their heuristic. The authors raise a question “why does the GDS network perform so well”. They state both a nonsystematic search hypothesis and an informedness hypothesis. They claim that the informedness hypothesis is the reason. By capturing the idea of GDS, the authors state the min-conflicts heuristic. The heuristic assigns a value of a variable in conflict while the value minimizes the number of conflicts. The authors also claim that many search strategies can use the method of repairing an inconsistent assignment except the hill-climbing strategy. This paper has been cited by many researchers including (Davenport, Tsang, Zhu, and Wang, 1994) and (Freuder, Dechter, Ginsberg, Selman, and Tsang, 1995).

In (Davenport, Tsang, Zhu, and Wang, 1994), the authors introduce a new connectionist architecture - GENET that solves CSPs using iterative improvement methods. One previous work referred to by the authors is (Minton, Johnston, Philips, and Laird, 1992). The authors state that the GENET network is similar to the GDS network. One significant difference from GDS is that GENET has a learning procedure. In order to escape local minima, they introduce a rule for adjusting the weights of the connections. The authors introduce two specific constraints: illegal constraints and atmost constraints, in addition to general constraints. They do experiments on the Graph Coloring problem, random general constraint satisfaction problems, and the Car Sequencing Problem. They test five different algorithms that are MCHC, MCHC2, GENET, GENET2, and GENET3. The authors claim that GENET outperforms other existing iterative improvement techniques. This paper has been cited by many researchers such as (Tsang, 1993) and (Freuder, Dechter, Ginsberg, Selman, and Tsang, 1995).

4.5 Performance of CSP algorithms
In (Nadel, 1988), the author evaluates some CSP solving algorithms on n-queens and confused n-queens problems. He claims that Forward Checking (FC) performs best among these algorithms. In (Kumar, 1992), the author lists three schemes of CSP-solving techniques: backtracking, constraint propagation, and constraint propagation inside backtracking. The author claims that the drawbacks for backtracking are thrashing (Gaschnig, 1979) and redundant work. One the other side, he also states that constraint propagation is more expensive than simple backtracking in most cases. So the author raises a question - “how much constraint propagation is useful”. In (Mackworth and Freuder, 1993), the authors compare and analyze the complexity of many finite CSP (FCSP) algorithms such as AC-1, AC-2, AC-3, and AC-4. They state that it is important to identify tractable problem classes that are specific classes with tractable solution techniques. 
4.6 Summary
	Year
	Method
	Main Advantage

	1975
	Backtracking
	1. A fundamental CSP-solving algorithm. 
2. A depth-first search. 
3. The base of many other CSP-solving algorithms.

	1977
	AC-3
	1. One of arc-consistency algorithms. 
2. After achieving arc-consistency, redundant information has been eliminated.


Table 1: A summary of two basic CSP-solving algorithms

5 Dynamic Backtracking

5.1 Problem addressed
In (Ginsberg, 1993), the problem addressed by the author is that meaningful progress is sometimes removed in existing backtracking methods. Two previous work referred to by the author are Dependency-directed backtracking (Stallman and Sussman, 1977) and Backjumping (Gaschnig, 1979). They both suffer from this problem. The author of the paper introduces a new technology called Dynamic Backtracking that can solve this problem. 

5.2 Definitions

The author uses another definition of the CSP. He define a CSP as “a set I of variables; for each i ∈I, there is a set of Vi of possible values for the variable i. κis a set of constraints, each a pair (J, P) where J= (j1, . . . , jk) is an ordered subset of I and P is a subset of Vj1X…XVjk”. 
The most important concept the author introduced is the concept of eliminating explanation. “Given a partial solution P to a CSP, an eliminating explanation for a variable I is a pair (v, S) where v ∈Vi and
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”. The underlying meaning of eliminating explanation is that i cannot be set to v because the values that are already set by P to the variables in S. An eliminating mechanism ε is a function that has two inputs (a partial solution P and a variable i 
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) and one output (an eliminating explanation set ε(P, i) for i).
5.3 The algorithm

The author reconstructs the depth-first search algorithm and the Backjumping algorithm with his notations of CSP and the concept of eliminating explanation. Then he gives the algorithm of Dynamic Backtracking:
[image: image9.emf]
Figure 3 dynamic backtracking (Ginsberg, 1993)

The essential difference from previous methods is that the author saves nogood information based on the current assignment. A nogood is dropped if it depends on old information. The author compares Dynamic Backtracking with Backjumping by the experiment of generating nineteen puzzles of different sizes. Similar work has been done in (Ginsberg, Frank, Halpin, and Torrance, 1990). The author claims that Dynamic Backtracking has better performance than Backjumping. He claims that, in nineteen tests, Dynamic Backtracking beats Backjumping in six and obtains the same performance as Backjumping in the other thirteen. Future work suggested by the author are backtracking to older culprits and dependency pruning.
5.4 Related work
Dynamic Backtracking is a systematic search technique. In (Jonsson and Ginsberg, 1993), the authors make a comparison between new systematic and nonsystematic search techniques. They compare the performance of depth first search and three new search methods which are Dynamic Backtracking (Ginsberg, 1993), Minimum Conflicts hill climbing (Minton, Johnston, Philips, and Laird, 1990) and GSAT (Selman, Levesque, and Mitchell, 1992). The authors do experiments mainly on the graph-coloring problem because they state that it is the best problem to evaluate these methods’ performance among graph-coloring problem, n-queens problem, and crossword puzzles. The authors claim some results. For example, they claim that Dynamic Backtracking performs better than the nonsystematic methods in graph coloring problem. Future work suggested by the authors is that people can compare their work with similar work that is being done at the AT&T Bell Laboratories.
In (Ginsberg and McAllester, 1994), the authors introduce a new algorithm that combines both systematic and nonsystematic approaches. Two previous works referred to by the authors are Dynamic Backtracking (Ginsberg, 1993) and GSAT (Selman, Levesque, and Mitchell, 1992). The authors use the notation of nogoods instead of constraints in standard definition of CSP. The new algorithm is called Partial-order Dynamic Backtracking (PDB). In this algorithm, they also introduce two new concepts: safety conditions and weakening. In experiment (3-SAT problem), the authors compare PDB with WSAT and TABLEAU. They claim that PDB performs the best among these three algorithms. Two future works are suggested by the authors. First, more problems need to be tested. Second, there are a few untouched questions about the flexibility of PDB.

In (Freuder, Dechter, Ginsberg, Selman, and Tsang, 1995), the problem addressed by the authors is systematic and stochastic control in CSP. Two previous works referred to by the authors are (Minton, Johnston, Philips, and Laird, 1992) and (Ginsberg and McAllester, 1994). Freuder states a lot of questions that relate to this problem. Dechter claims that, between systematic algorithms and stochastic greedy, the main job if how to exploit identified class-superior algorithms. Ginsberg states two observations about systematic and nonsystematic search. Selman claims that it is better to formulate problems using model-finding than theorem proving. Tsang claims that stochastic search is more important in practical applications. This paper has been cited by many researchers such as (Gomes, Selman, 1997).

6 General CSPs
6.1 Introduction
More research has been done on binary CSPs than on general CSPs. One reason is that “new ideas/techniques are usually much simpler to present/elaborate by first restricting them to the binary case” (Bessiere, 1999). The other reason is that all CSP problems can be transformed into binary CSPs with some cost (Tsang, 1993). However, many researchers have done significant work on general CSPs.
6.2 Early research

(Mackworth, 1977b) is one of the early works on general CSPs. The purpose of this paper is to describe a program, called MAPSEE, which interprets sketch maps. One previous work referred to by the author is (Freuder, 1976). The author states that, first, there is a phase called the initial partial segmentation. Then the second phase addressed by the author is achieving consistency. In this period, he provides a new algorithm NC, an n-ary Relation Consistency Algorithm. He claims that NC is a generalized version of AC-3, which is more efficient than AC-3. In the end, the author states that there is some room for refining the initial segmentation. Future works suggested by the author are the integration of segmentation and interpretation phases, the problem of automatically generating primary cue interpretation catalogue, and the use of schemata. This paper has been cited by many researchers such as (Bessiere, Meseguer, Freuder, and Larrosa, 1999) and (Bacchus, Chen, van Beek, and Walsh, 2002).
6.3 Later research

In (Rossi, Petrie, and Dhar, 1989), the problem addressed by the authors is that old definition of equivalence of CSPs is limited. One previous work referred to by the authors is (Montanari, 1974). Two CSPs are equivalent based on the old definition of equivalence if they share the same solutions. The authors develop a new and more general definition of equivalence - extended equivalence. The authors introduce the concept of mutual reducibility as the base of extended equivalence. They claim that they prove binary and non-binary CSPs are equivalent using new definition of equivalence. The authors also introduce two algorithms for transforming non-binary CSPs into equivalent binary CSPs. They claim that one algorithm of them can produce an equivalent binary CSP and the other one can succeed to transform with some cost. Future work suggested by the authors is that it is possible to generalize the new definition to other types of problems. This paper has been cited by many researchers such as (Bessiere, Meseguer, Freuder, and Larrosa, 1999) and (Bacchus, Chen, van Beek, and Walsh, 2002).

In (Bacchus and van Beek, 1998), the problem addressed by the authors is that few theoretical and experimental works have been done on performance of non-binary CSPs and their binary representations. Two previous theoretical works referred to by the authors are (Mackworth, 1977b) and (Van Hentenryck, 1989). One previous experimental work referred to by the authors is (Ginsberg, 1993). The authors introduce a new algorithm called FC+ that is a modification of FC. Except that, in addition to pruning the domains of h-variables, FC+ also prunes the domains of corresponding uninstantiated variables. The authors claim that FC+ sometimes performs better than FC on the non-binary CSPs. They also claim that the number of satisfying tuples may be the most important factor when we decide to translate or not. One future work suggested by the authors is to investigate the relationship between binary translations. This paper has been cited by many researchers such as (Bessiere, 1999).

In (Bessiere, Meseguer, Freuder, and Larrosa, 1999), the problem addressed by the author is the problem of solving non-binary CSPs by extending binary search algorithms. One previous work referred to by the authors is (Rossi, Petrie, and Dhar, 1989). In this paper, the authors extend FC for non binary constraints. Depending on different alternatives of constraints involving past, current, and future variables, the authors introduce six algorithms (nFC0, nFC1, nFC2, nFC3, nFC4, and nFC5). The authors prove some results on the six algorithms. For example, they prove that these algorithms are all correct (soundness and completeness). To compare FC+, nFC0, nFC1, nFC2, nFC3, nFC4, and nFC5, they do three experiments on random problems, Schur’s lemma, and the car sequencing problem. The authors claim that their performance has very close relationship with the tightness and arity of constraints. They also claim that their performance also depends on the use of the semantics of constraints. Future work suggested by the author is how to find a criterion to choose an appropriate nFCx algorithm. This paper has been cited by many researchers such as (Stergiou, 2001).

6.4 Current research

In (Pang, 1998), the author introduces an algorithm to solve non-binary CSPs. One previous work referred to by the author is (Pang and Goodwin., 1996). The author describes an algorithm called constraint-directed backtracking algorithm (CBDT) that can solve non-binary CSPs. A shortcoming of traditional backtracking is that all given constraints are as criterion functions when we check consistency. CBDT searches for assignments of variables from constraints. The author claims that CBDT has a more limited search space than BT and other tree search algorithms. This paper has been cited by (Price, 2005).

In (Bacchus, Chen, van Beek, and Walsh, 2002), the authors compare binary constraints and non-binary constraints. Two major previous work are (Dechter and Pearl, 1989) and (Rossi, Petrie, and Dhar, 1989). The authors compare the dual transformation and the hidden transformation. The forward checking and maintaining arc consistency algorithms are used in the comparison. The two algorithms are two variations of chronological backtracking algorithm. At every node in search tree, they maintain a local consistency property. The authors prove some results from the comparison. For example, they prove that enforcing arc consistency on the original CSP is the same as its hidden transformation. They claim that their results can help users who want to apply the two transformations to a CSP model. This paper has been cited by (Stergiou and Walsh, 2006).

6.5 Summary
	Year
	Method
	Main Advantage

	1977
	 NC
	1. NC is the n-ary Relation Consistency algorithm, a generalized version of AC-3.

2. The author claims that NC is more efficient than AC-3.

	1996
	CBDT
	1. CBDT searches for assignments of variables from constraints.

2. The author claims that CDBT has a more limited search space than BT and other tree search algorithms

	1998
	FC+
	1. A modification of FC. 
2. Prune the domain of h-variables and prune the domains of corresponding uninstantiated variables.
3. The author claims that FC+ sometimes performs better than FC.

	1999
	nFCx (x: from 0 to 5)
	1. The authors claim that their performance has very close relationship with the tightness and arity of constraints.

2. The authors claim that their performance depends on the use of the semantics of constraints


Table 1: A summary of some general CSP-solving algorithms

7 Concluding Remarks
Currently, most significant papers on CSPs appear in the journal of Artificial Intelligence and the journal of Constraints. The primary conference in this area is called the International Conference on Principles and Practice of Constraint Programming (CP). The International Joint Conference on Artificial Intelligence (IJCAI) is another important conference. From these sources, some but not all further directions of CSP research can be identified in following:

1. Uncertainty Reasoning: (Tarim, Manandhar, and Walsh, 2006)
2. Distributed CSPs: (Zivan, and Meisels, 2006) and (Hirayama and Yokoo, 2005)
3. Symmetry: (Cohen, Jeavons, Jefferson, Petrie, and Smith, 2006) and (Puget, 2005)
4. Consistency: (Li, 2006) and (de Givry, Heras, Zytnicki, and Larrosa, 2005)
5. Constraints in Bioinformatics: (Backofen, and Will, 2006)
6. Quantified Constraint Satisfaction Problems: (Gent, Nightingale, and Stergiou, 2005) and (Gottlob, Greco, and Scarcello, 2005)
In this survey, basic knowledge of CSPs, including history, key definitions, and some important algorithms and papers, has been introduced. Dynamic Backtracking and general CSPs as two specific research areas have been surveyed in great detail. At present, there is no existing research work on solving general CSPs using Dynamic Backtracking.
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Appendix-II
Annotated Bibliography of Important Papers
1. Bacchus, F., Chen, X., van Beek, P., and Walsh, T. (2002). Binary vs. non-binary constraints. Artificial Intelligence, 140(1-2):1-37.
The authors compare binary constraints and non-binary constraints. Two major previous works are (Dechter and Pearl, 1989) and (Rossi, Petrie, and Dhar, 1989). The authors compare the dual transformation and the hidden transformation. The forward checking and maintaining arc consistency algorithms are used in the comparison. The two algorithms are two variations of chronological backtracking algorithm. At every node in search tree, they maintain a local consistency property. The authors prove some results from the comparison. For example, they prove that enforcing arc consistency on the original CSP is the same as its hidden transformation. They claim that their results can help users who want to apply the two transformations to a CSP model. This paper has been cited by (Stergiou and Walsh, 2006).

2. Bacchus, F and van Beek, P. (1998). On the conversion between non-binary and binary constraint satisfaction problems, in proceeding of AAAI-98, 311—318, Madison, Wisconsin.

The problem addressed by the authors is that few theoretical and experimental works have been done on performance of non-binary CSPs and their binary representations. Two previous theoretical works referred to by the authors are (Mackworth, 1977b) and (Van Hentenryck, 1989). One previous experimental work referred to by the authors is (Ginsberg, 1993). The authors introduce a new algorithm called FC+ that is a modification of FC. Except that, in addition to pruning the domains of h-variables, FC+ also prunes the domains of corresponding uninstantiated variables. The authors claim that FC+ sometimes performs better than FC on the non-binary CSPs. They also claim that the number of satisfying tuples may be the most important factor when we decide to translate or not. One future work suggested by the authors is to investigate the relationship between binary translations. This paper has been cited by many researchers such as (Bessiere, 1999).

3. Bessiere, C., Meseguer, P., Freuder, E.C., and Larrosa, J. (1999). On forward checking for non-binary constraint satisfaction. In Principles and Practice of Constraint Programming (CP99), number 1713 in LNCS, pages 88--102. Springer-Verlag, New York.

The problem addressed by the author is the problem of solving non-binary CSPs by extending binary search algorithms. One previous work referred to by the authors is (Rossi, Petrie, and Dhar, 1989). In this paper, the authors extend FC for non binary constraints. Depending on different alternatives of constraints involving past, current, and future variables, the authors introduce six algorithms (nFC0, nFC1, nFC2, nFC3, nFC4, and nFC5). The authors prove some results on the six algorithms. For example, they prove that these algorithms are all correct (soundness and completeness). To compare FC+, nFC0, nFC1, nFC2, nFC3, nFC4, and nFC5, they do three experiments on random problems, Schur’s lemma, and the car sequencing problem. The authors claim that their performance has very close relationship with the tightness and arity of constraints. They also claim that their performance also depends on the use of the semantics of constraints. Future work suggested by the author is how to find a criterion to choose an appropriate nFCx algorithm. This paper has been cited by many researchers such as (Stergiou, 2001).

4. Davenport, A., Tsang, E.P.K., Zhu, K. and Wang, C.J. (1994). GENET: A Connectionist Architecture for Solving Constraint Satisfaction Problems by Iterative Improvement, in Proceedings of AAAI, 325-330.
The authors introduce a new connectionist architecture - GENET that solves CSPs using iterative improvement methods. One previous work referred to by the authors is (Minton, Johnston, Philips, and Laird, 1992). The authors state that the GENET network is similar to the GDS network. One significant difference from GDS is that GENET has a learning procedure. In order to escape local minima, they introduce a rule for adjusting the weights of the connections. The authors introduce two specific constraints: illegal constraints and atmost constraints, in addition to general constraints. They do experiments on the Graph Coloring problem, random general constraint satisfaction problems, and the Car Sequencing Problem. They test five different algorithms that are MCHC, MCHC2, GENET, GENET2, and GENET3. The authors claim that GENET outperforms other existing iterative improvement techniques. This paper has been cited by many researchers such as (Tsang, 1993) and (Freuder, Dechter, Ginsberg, Selman, and Tsang, 1995).

5. Freuder, F., Dechter, R., Ginsberg, M., Selman, B., and Tsang, E. (1995). Systematic versus stochastic constraint satisfaction. Proc. IJCAI-95, Montreal, Canada. 

The problem addressed by the authors is systematic and stochastic control in CSP. Two previous works referred to by the authors are (Minton, Johnston, Philips, and Laird, 1992) and (Ginsberg and McAllester, 1994). Freuder states a lot of questions that relate to this problem. Dechter claims that, between systematic algorithms and stochastic greedy, the main job if how to exploit identified class-superior algorithms. Ginsberg states two observations about systematic and nonsystematic search. Selman claims that it is better to formulate problems using model-finding than theorem proving. Tsang claims that stochastic search is more important in practical applications. This paper has been cited by many researchers such as (Gomes, Selman, 1997).

6. Ginsberg M. L. (1993). Dynamic backtracking. Journal of Artificial Intelligence Research, vol. 1, 25- 46.

The problem addressed by the author is that meaningful progress is sometimes removed in existing backtracking methods. Two previous works referred to by the author are Dependency-directed backtracking (Stallman and Sussman, 1977) and Backjumping (Gaschnig, 1979). They both suffer from this problem. The author of the paper states a new technology named Dynamic Backtracking that can solve this problem. The essential difference from previous methods is that the author saves nogood information based on the current assignment. A nogood is dropped if it depends on old information. The author compares Dynamic Backtracking with Backjumping by the experiment of generating nineteen puzzles of different sizes. The author claims that Dynamic Backtracking has better performance than Backjumping. He claims that, in nineteen tests, Dynamic Backtracking beats Backjumping in six and obtains the same performance as Backjumping in the other thirteen. Future works suggested by the author are backtracking to older culprits and dependency pruning. This paper has been cited by many researchers such as (Jussien, N., Debruyne, R., and Boizumault, P., 2000).
7. Ginsberg, M. L., Frank, M., Halpin, M. P., and Torrance, M. C. (1990). Search lessons learned from crossword puzzles. In Proceeding of the Eighth National Conference on Artificial Intelligence, pp. 210-215.

The problem addressed by the author is conjunctive search in crossword puzzles problem. One previous work referred to by the authors is (Mazlack, 1976). In the search, the authors use lookahead technique, which they claim that it has not been used elsewhere. In addition, they apply two well-known heuristics: cheapest-first heuristic and connectivity heuristic. They also use intelligent instantiation in the search. In experiments, the authors test four puzzles with different parameters. They claim that the following conclusions. First, lookahead and cheapest-first heuristic are necessary sometimes. Second, it is better to use cheapest-first heuristic at runtime than at compile time. Third, it is best to use the connectivity heuristic during backtrack only. Future works suggested by the authors are simulated annealing, undirected search, metalevel work, and domain-specific information. This paper has been cited by many researchers such as (Ginsberg, 1993).

8. Ginsberg, M. L. and McAllester, D. A. (1994). GSAT and dynamic backtracking. In P. Torasso, J. Doyle, and E. Sandewall, editors, Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning, pages 226--237. Morgan Kaufmann.

The authors introduce a new algorithm that combines both systematic and nonsystematic approaches. Two previous works referred to by the authors are Dynamic Backtracking (Ginsberg, 1993) and GSAT (Selman, Levesque, and Mitchell, 1992). The authors use the notation of nogoods instead of constraints in standard definition of CSP. The new algorithm is called Partial-order Dynamic Backtracking (PDB). In this algorithm, they also introduce two new concepts: safety conditions and weakening. In experiment (3-SAT problem), the authors compare PDB with WSAT and TABLEAU. They claim that PDB performs the best among these three algorithms. Two future works are suggested by the authors. First, more problems need to be tested. Second, there are a few untouched questions about the flexibility of PDB. This paper has been cited by many researchers such as (Freuder, Dechter, Ginsberg, Selman, and Tsang, 1995).

9. Jonsson, A. K., and Ginsberg, M. L. (1993). Experimenting with new systematic and nonsystematic search techniques. In Proceedings of the AAAI Spring Symposium on AI and NP-Hard Problems Stanford, California.

In this paper, the authors make a comparison between new systematic and nonsystematic search techniques. They compare the performance of depth first search and three new search methods which are Dynamic Backtracking (Ginsberg, 1993), Minimum Conflicts hill-climbing (Minton, Johnston, Philips, and Laird, 1990) and GSAT (Selman, Levesque, and Mitchell, 1992). The authors do experiments mainly on the graph-coloring problem because they state that it is the best problem to evaluate these methods’ performance among graph-coloring problem, n-queens problem, and crossword puzzles. The authors claim some results. For example, they claim that Dynamic Backtracking performs better than the nonsystematic methods in graph coloring problem. Future work suggested by the authors is that people can compare their work with similar work that is being done at the AT&T Bell Laboratories. This paper has been cited by many researchers such as (Ginsberg and McAllester, 2000).

10. Mackworth, A. K. (1977a). Consistency in Networks of Relations. Artificial Intelligence 8(1): 99-118.

The problem addressed by the author is the thrashing problem when backtracking. Two previous works referred to by the author are (Waltz, 1972) and (Montanari, 1974). The author of the paper describes three thrashing phenomenon as, respectively, node inconsistency, arc inconsistency, and path inconsistency. The author proviedes an accessible and unified framework with algorithms for different level of consistency: NC(i) for node consistency; AC-1, AC-2, and AC-3 for arc consistency; PC-1 and PC-2 for path consistency. Both AC-3 and PC-2 are developed by the author. He claims that he improves PC-2 by pursuing the analogy with AC-1. The author also claims that consistency can be used to solve many problems such as puzzles problem. This paper has been cited by many researchers such as (Tsang, 1993) and (Bacchus, Chen, van Beek, and Walsh, 2002).

11. Mackworth, A. K. (1977b). On reading sketch maps. In Proceedings of the Fifth International Joint Conference on Artificial Intelligence, pages 598--606, Cambridge, Mass.

The purpose of this paper is to describe a program, called MAPSEE, which interprets sketch maps. One previous work referred to by the author is (Freuder, 1976). The author states that, first, there is a phase called the initial partial segmentation. Then the second phase addressed by the author is achieving consistency. In this period, he provides a new algorithm NC, an n-ary Relation Consistency Algorithm. He claims that NC is a generalized version of AC-3, which is more efficient than AC-3. In the end, the author states that there is some room for refining the initial segmentation. Future works suggested by the author are the integration of segmentation and interpretation phases, the problem of automatically generating primary cue interpretation catalogue, and the use of schemata. This paper has been cited by many researchers such as (Bessiere, Meseguer, Freuder, and Larrosa, 1999) and (Bacchus, Chen, van Beek, and Walsh, 2002).

12. Mackworth, A. and Freuder, E. C. (1993). The complexity of constraint satisfaction revisited. Artificial Intelligence, 59:57--62.

This paper is an analysis of the complexity of constraint satisfaction problems. One previous work referred to by the authors is (Mackworth and Freuder, 1985), which is an early work of the authors. The authors compare and analyze the complexity of many finite CSP (FCSP) algorithms such as AC-1, AC-2, AC-3, and AC-4. They state that it is important to identify tractable problem classes that are specific classes with tractable solution techniques. They state one example of that kind of classes: tree-structured problems. The authors claim one practical consequence of their work that is consistency algorithms as primitives are good for constraint-based programming languages. They also claim that no polylogarithmic time parallel algorithm can be found in general cases. Future works suggested by the authors are developing practical tools and identifying more tractable problem classes. This paper has been cited by many researchers such as (Bessi`ere, Freuder, and Regin, 1995).

13. Minton, S., Johnston, M. D., Philips, A. B., and Laird, P. (1990). Solving large-scale constraint satisfaction and scheduling problems using a heuristic repair method. In Proceedings of the Eighth National Conference on Artificial Intelligence (AAAI-90), pages 17-24, Boston, Mass.

The problem addressed by the authors is that meaningful progress is how to solve large-scale constraint satisfaction and scheduling problems. Three previous works referred to by the authors are (Stone and Stone, 1987), (Adorf and Johnston, 1990), and (Johnston and Adorf, 1989). The authors develop a new heuristic called min-conflicts heuristic that captures the idea of GDS Network. The main idea of the min-conflicts heuristic is to minimize the number of conflicts by assigning a new value into the variable, which is in conflict. The authors do experiments by employing three search strategies (hill-climbing, informed backtracking, and best-first search) with the min-conflicts heuristic. They claim that min-conflicts hill-climbing and min-conflicts backtracking perform much better than basic backtracking on the n-queens problem. They also claim that the min-conflicts heuristic is less effective on problems like coloring sparsely-connected graphs. They state that these problems have a few highly-critical constraints and many less important constraints. Future works suggested by the author includes backtracking to older culprits and dependency pruning. This paper has been cited by many researchers, e.g. (Minton, Johnston, Philips, and Laird, 1992) and (Ginsberg, 1993).

14. Minton, S., Johnston, M. D., Philips, A. B., and Laird, P. (1992). Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems. Artificial Intelligence 58(1-3):161--205.

The authors introduce a heuristic approach that can solve CSP and scheduling problems. Three previous works referred to by the authors are (Minton, Johnston, Philips, and Laird, 1990), (Adorf and Johnston, 1990), and (Johnston and Adorf, 1989). The last two works inspired their heuristic. The authors raise a question “why does the GDS network perform so well”. They state both a nonsystematic search hypothesis and an informedness hypothesis. They claim that the informedness hypothesis is the reason. By capturing the idea of GDS, the authors state the min-conflicts heuristic. The heuristic assigns a value of a variable in conflict while the value minimizes the number of conflicts. The authors also claim that many search strategies can use the method of repairing an inconsistent assignment except the hill-climbing strategy. This paper has been cited by many researchers including (Davenport, Tsang, Zhu, and Wang, 1994) and (Freuder, Dechter, Ginsberg, Selman, and Tsang, 1995).

15. Pang, W. (1998). Constraint Structure in Constraint Satisfaction Problems. PhD thesis, Chapter 2, pp. 18-26, University of Regina, Canada.

The problem addressed by the author is how to solve non-binary CSP. One previous work referred to by the author is (Pang and Goodwin., 1996). The author describes an algorithm called constraint-directed backtracking algorithm (CBDT) that can solve this problem. A shortcoming of traditional backtracking is that all given constraints are as criterion functions when we check consistency. CBDT searches for assignments of variables from constraints. The author claims that CBDT has a more limited search space than BT and other tree search algorithms. This paper has been cited by (Price, 2005).
16. Rossi, F., Petrie, C., and Dhar, V. (1989). On the equivalence of constraint satisfaction problems. Technical Report ACT-AI-222-89, MCC, Austin, Texas. A shorter version appears in ECAI-90, pages 550-556.

The problem addressed by the authors is that old definition of equivalence of CSPs is limited. One previous work referred to by the authors is (Montanari, 1974). Two CSPs are equivalent based on the old definition of equivalence if they share the same solutions. The authors develop a new and more general definition of equivalence - extended equivalence. The authors introduce the concept of mutual reducibility as the base of extended equivalence. They claim that they prove binary and non-binary CSPs are equivalent using new definition of equivalence. The authors also introduce two algorithms for transforming non-binary CSPs into equivalent binary CSPs. They claim that one algorithm of them can produce an equivalent binary CSP and the other one can succeed to transform with some cost. Future work suggested by the authors is that it is possible to generalize the new definition to other types of problems. This paper has been cited by many researchers such as (Bessiere, Meseguer, Freuder, and Larrosa, 1999) and (Bacchus, Chen, van Beek, and Walsh, 2002).

Surveys and books:
17. Kumar, V. (1992). Algorithms for constraint-satisfaction problems: A survey. AI Magazine, 13:32-44. 

This paper is a survey of constraint satisfaction problems. The author describes a lot of works done by CSP researchers. First, the author describes Backtracking algorithm and the thrashing problem of it. He claims that there are two reasons of thrashing that are referred to as node inconsistency and arc inconsistency. Second, the author states another CSP solving scheme called constraint propagation. He describes arc AC-1 algorithm and AC-3 algorithm in detail. He also introduces K-consistent, backtrack free and related concepts. Third, the author talks about the tradeoff of constraint propagation. Fourth, the author states another drawback of standard backtracking that is its redundant work. He describes the dependency directed backtracking that can solve both of the two drawbacks. Fifth, the authors talks about the ordering problem of CSP. This paper has been cited by many researchers such as (Tsang, 1993).

18. Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press. 

This book is the first comprehensive book of CSP. It includes almost all contents of constraint satisfaction problems so far. The author introduces all important definitions of CSP such as CSP, satisfiability, and consistency. He also states the detailed relationship between different kinds of satisfiability and consistency. The author classifies techniques in CSP solving into three categories that are problem reduction, search, and solution synthesis. Each category is corresponding to one chapter in this book. In the problem-reduction chapter, the author mainly talks about NC, AC, and PC algorithms. In the search-chapter, the author introduces three categories of search strategies: general search strategies, lookahead strategies, and gather-information-while-searching strategies. Most of CSP solving algorithms can be found in this chapter such as Backtracking, Forward Checking, BackJumping, Backchecking, Backmarking, and so on. In the solution-synthesis chapter, the author mainly talks about GENET. In the rest chapters, the author introduces other important topics in CSPs such as search orders, problem-specific features, and stochastic search. This paper has been cited by many researchers such as (Russell and Norvig, 2003).

19. Nadel, B. A. (1989). Constraint satisfaction algorithms. Computational Intelligence, 5:188-224.

This paper is a survey of CSP algorithms. The author talks mainly about three kinds of algorithms. First, the author introduces tree search algorithms including Backtracking, Backjumping, and Backmarking. Second, the author introduces arc consistency algorithms. He describes four partial arc consistency algorithms (AC
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). Then, he describes three full partial arc consistency algorithms (AC1, AC2, and AC3). Third, the author describes hybrid tree search / arc consistency algorithms including nine full arc consistency hybrids (RFLi, TSACi, and TSRACi, i=1, 2, 3) and four partial arc consistency hybrids (FL, PL, FC, and BT). The author uses the q-queens problems and the confused q-queens problems for experiments. He obtains nice results. For example, the author claims that nine full arc consistency hybrids generate the same number of nodes while the other algorithms generate more nodes. This paper has been cited by many researchers such as (Bacchus, Chen, van Beek, and Walsh, 2002).

20. Russell, S. J., and Norvig, P. (2003). Artifical Intelligence: A Modern Approach. Prentice Hall, 2nd edition.

This is a comprehensive book of Artificial Intelligence. Over 600 universities and colleges have used the book. The book has 27 chapters that introduce different fields of Artificial Intelligence including problem-solving, knowledge and reasoning, planning, uncertain knowledge and reasoning, learning, and communicating, perceiving, and acting. In Chapter 5, the authors introduce constraint satisfaction problems. The authors put it under problem-solving, which is a big field in Artificial Intelligence. So the authors describe it as an incremental formulation using standard search problem notations. The authors organize the chapter into two parts: backtracking search and local search. In the first part, they introduce some topics in CSP such as simple backtracking, variable and value ordering, forward checking, constraint propagation, and so on. In the second part, they introduce a heuristic called min-conflicts.
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