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ABSTRACT
This survey shines a light on current issues in the area of Web log sequential mining techniques. Approaches ranging from the traditional Apriori methods to the modified and improved versions were discussed. Methods that use better data structures to implement the Apriori principles were given attention. Papers that give recent approaches to sequential mining with pattern based method forms the nucleus of section four. Analysis show that great improvements have been shown in pattern based approaches with the removal of candidate sequence generation and intermediate tree mining shown in PLWAP. Future efforts are to be directed towards relating these techniques to content of pages and use of weights (importance) on web pages.
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1.0 INTRODUCTION
This survey has been carried out to find current research issues in the area of Web log Sequential mining. Fifty one (51) papers were identified out of which twenty were annotated. Out of these twenty papers, ten (10) of the papers are right on the topic of interest. Eight (8) papers were found to be highly applicable to the topic of web log sequential mining. These are papers that address sequential mining but may use other types of data to test their approach other than web logs. Two (2) papers use the approach of sequential mining for web content and events in devices.
The Survey has been organised into three different sections according to the method of approach of the papers surveyed. The first category of papers is the one based on plain Apriori methods as defined by the founders of the problem of sequential mining. Two (2) papers belong to this category. The second category consists of nine (9) papers that are modifications of Apriori algorithms. Their fundamental principle still depends on Apriori but efforts are made to improve it. The last category includes papers that are pattern-based and early pruning techniques. Nine (9) papers are also found to suit this method.
Each section begins with the description of the works annotated in the category and their related works. This is then followed with description and analysis of experiments described in the papers. Conclusions and areas of future work are based on the findings from the papers.

2.0 BACKGROUND TO THE TOPIC
The problem of mining web logs can be traced back to the association rule mining technique originally introduced by Agrawal and Srikant (1995). Etzioni (1996) claim that finding frequent sequential patterns in web logs can be useful for server performance enhancements, restructuring of website and direct marketing in e-commerce. This has made research in this area an important one given the role internet and websites play in our day to day activities. Web log mining, synonymous with Web usage mining, is one of the three areas of web mining identified by Madria et al (1999) and Borges and Leven (1999). Technically, the problem of sequential mining of web logs is that of finding all ordered sequence of web pages accessed whose support count is greater than a specified minimum threshold (Ayres et al, 2002). Cooley (2003) defined web usage mining as “the application of data mining techniques to web clickstream data in order to extract usage patterns”. Han and Kambler (2006) also gave an insight to the area of data mining including the sequential mining of web logs. 
3.0 PLAIN APRIORI METHOD
This section gives an introduction into the problem of sequential pattern mining and the early methods used to solve this problem. It gives insight into the general problem of sequential mining which can be adapted to the web usage mining environment. 

Agrawal and Srikant (1995) claim to be the first to introduce the problem of mining sequential patterns. They claim that early works by Agrawal et al (1993) only concentrate on discovering patterns within transactions but the problem of discovering sequential pattern is that of inter-transaction pattern mining. Agrawal and Srikant (1995) introduce and addressed the problem of discovering sequential patterns in transactional databases where transactions are taken as sequences with each sequence containing one or more items. The authors set out to identify inter-transaction patterns, treating each transaction (itemsets) as a unit rather than treating items as a unit. Related work by Dietterich and Michalski (1985) in Artificial Intelligence predicts what the next sequence is likely to be from the history of the already existing sequence.
3.1 The Algorithms

Agrawal and Srikant (1995) propose three different versions of algorithms to discover sequential patterns in a transaction database. The algorithms are AprioriSome, AprioriAll and DynamicSome. The 5 phases involved in the algorithms are:

1. Sort. 

2. Litemset. 

3. Transformation.
4. Sequence.
5.  Maximal phase. 

The sort phase prepares the transaction database in an ordered list since the authors claim recognising sequential patterns is based on having sequences in an ordered version. The Litemset claims to generate the set of itemsets with minimum support from where transactions (sequences) are changed by retaining those containing itemsets in the Litemset at the transformation phase. These three algorithms are then implemented at the Sequence phase. The AprioriAll version uses countAll algorithm that includes all non-maximal sequences, while AprioriSome and DynamicSome only count the maximal large sequences generated. AprioriSome and DynamicSome are different in the way they generate candidate sequence in the forward phase. The large sequences identified at the sequence phase are then examined to remove the non-maximal once at the Maximal phase.

3.2 The GSP Algorithm

Srikant and Agrawal (1996) introduced GSP, a more flexible approach into their earlier work stated above. They claim that the problem of discovering sequential patterns with earlier approach fail to take into account time constraints in the sequence to be considered. They also stress that existing approach have rigid definition of transactions. Grouping of items into hierarchies (taxonomies) can also found to be missing in the earlier algorithm. The authors have proposed GSP (Generalized Sequential Patterns) to cater for these limitations. They claim to include time constraints, flexibility in the definition of transaction and inclusion of taxonomies. Related to this is the work of Han and Fu (1995) where user-defined taxonomies in association rules were addressed. Mannila et al (1995) also presented the problem of discovering frequent episodes in a sequence of events.
The GSP algorithm is a multiple-pass solution. The first pass considers the items individually and generate the frequent 1-sequence for those with support count greater than the minimum support. The 1-sequence set is used to generate the next set of candidate sequences by a join operation with itself. The support for these candidate sequences are also calculated using hash-tree data structure and compared to the minimum support threshold. Pruning operation is also performed to remove those candidate sequences whose sub-sequences are not frequent. The inclusion of taxonomies is done by extending the datasets to include all the ancestors of each item before GSP is performed.

3.3 Analysis of the techniques

The authors claim that synthesized data were used to test the performance of AprioriSome, AprioriAll and DynamicSome. Varying  average number of transactions per customer, average number of items per transaction and average length of maximal potentially large sequences show that the execution time of all the three algorithms increases with decrease in support from 1% to m.2%.  DynamicSome has worst performance and AprioriAll best.
The authors claim that implementation of GSP with synthetic and real life data show that GSP is 1.3 to 5 times faster than AprioriAll with synthetic data as the minimum support is reduced. Real life data show that GSP is 2 to 20 times faster than AprioriAll. The authors stress that GSP scales linearly with number of data-sequences. The effects of time constraint and sliding window were also tested. The authors found that there were no performance degradation with minimum gap constraint but 5% to 30% performance penalty was found when maximum gap constraints were specified.

Table 3.1 shows the summary of the authors mentioned in this section and their various contributions:

	Year/Authors
	Title
	Contributions

	Dietterich and Michalski (1985)
	Discovering patterns in sequence of events
	Related work in Artificial Intelligence where prediction of next sequence is likely to be from the history of the already existing sequence.



	Agrawal et al (1993)
	Mining Association Rules between sets of items in large databases
	Discovery of sequential patterns within transactions

	Agrawal and Srikant(1995)
	Mining Sequential Patterns
	Introduction of the Sequential mining problem with the proposal of Apriori Algorithm.

	Han and Fu (1995) 
	Discovery of Multiple- level association rules from large databases
	Solution into user-defined taxonomies in association rules.

	Manilla et al (1995)
	Discovering frequent Episodes in Sequences
	Use of Directed Acyclic Graph (DAG) in discovering frequent episodes in a sequence of events.

	Srikant and Agrawal (1996)
	Mining Sequential Patterns: Generalizations and Performance Improvement
	Proposal of a new improved GSP algorithm that is 20 time faster than AprioriAll with more options.



Table 3.1 showing authors and their various contributions

4.0 OTHER APRIORI-BASED APPROACHES
Several researchers have based their approaches on the fundamental principles of the  Apriori algorithm. Oates et al (1997) claim the discovery of frequent patterns in multiple event sequences using MEDD and MSDD algorithms. Cooley et al (1997) and Zaiane et al (1998) provide an approach towards cleaning of web logs in readiness for mining. Page replacement policy using inflation factor proposed by Cherkasova (1998) claims to show some improvement. Masseglia et al (1999) show that candidate sequences can be reduced when they are generated from previously mined results, an effort directed towards increased efficiency. Ouyang and Cai (1999) propose a solution to change in minimum support threshold when the sequence database remains unchanged. Buchner et al (1999) also extend the discovery of web access patterns to include navigational templates, network topologies and concept hierarchies. Spiliopoulou (1999) propose discovery of sequences of web data with an aggregated tree.

Su et al (2000) propose a n-gram sequence model for page catching and pre-fetching. Zaki (2001) propose a SPADE algorithm that uses vertical –id list representation of database to generate frequent sequences. Most importantly, the application of the Apriori algorithm is also demonstrated in improving page catching and pre-fetching (Yang et al, 2001). Sebastiani (2002) propose the determination of frequent sequence using phrases, an approach that was claimed to be less efficient by Wu et al (2004).  The first depth-first approach of sequential pattern mining as demonstrated in SPAM is claimed to show an improvement that can be made with the right implementation, especially with long sequences (Ayres et al, 2002). Goethal and Zaki (2003) claim that the Apriori algorithm can be improved with a better data structure. Wu et al (2004) proposed pattern- taxonomy extraction model (PTM) for mining frequent sequences in web content mining.

Extension and improvement of apriori algorithms are also seen in the incremental mining approach when a certain part of the database is deleted (Ren and Zhou, 2005). Bodon (2005) claim that efficiency of the Apriori algorithm can be improved with the right data structure. He proposed a trie data structure for the implementation. Yang and Kitsuregawa (2005) propose an improved SPAM by removing the need to iteratively use S-matrix and AND operations. Application of the Apriori algorithms have been shown by Srinivasan et al (2006) where Hybrid- Apriori is used to determine frequent patterns of events in devices within a specified interval.
4.1 The algorithms.

Buchner et al (1999) claim that existing algorithms only take into account discovery of sequential access pattern from web logs. They fail to take into account some other web-specific features. The authors claim to have addressed the inclusion of domain knowledge such as navigational templates, Network topologies and concept hierarchies in addition to the discovery of access patterns in the algorithm called MiDAS. Buchner et al (1999) state that The MiDAS algorithm operates in three phases. The Apriori phase does the data reduction and data type substation. The data items lesser than minimum support are excluded. The 1-sequences are generated with their frequencies in readiness for pattern tree construction. The concept hierarchy filtering is done at this stage. The Discovery phase constructs a directed pattern tree representing the candidate sequences with their properties such as frequencies and time stamp. It also shows if sequences belong to same session. The last phase, the posteriori phase, filters based on the navigation template and network topology. This is then followed by pruning hits that, though have required support threshold, are not maximal. A sequence is maximal if it is not contained in another sequence.

Yang et al (2001) claim that there has been no sequential mining algorithms designed to improve caching and pre-fetching of web pages and objects. They claim that existing algorithms only make use of past frequency counts in predicting in predicting future request. The authors have proposed an n-gram based algorithm of sequential mining that is integrated with caching and pre-fetching models of web pages and objects. Yang et al (2001) use the web log sequence in predicting future requests using association rules. Substrings of length n are regarded as n-gram without allowing gaps between adjacent symbols. Objects such as videos which are not represented in the log are associated with their parent page and their predictions based on the confidence threshold and the rules generated dynamically from an Embedded Object Table (EOT). Rules are also generated from the web page sequences. Rules within a particular threshold range are kept.

The above process generates trained data (rules), subsequent sequences are tested against these patterns while checking the confidence of the new sequences against the agreed threshold. A true value sees such pattern being kept in the cache. Probabilities of future request of each page are calculated from this and added to its frequency of occurrence to calculate the replacement priority values in the cache.The same predictive n-gram model is used to determine the pages to be pre-fetched. The pre-fetching strategy is considered when the cache is large enough to be partitioned into two.

Zaki (2001) claim that existing algorithms for discovering frequent sequential pattern are faced with repeated database scan and use of complex hash structures which have poor locality. He propose SPADE (Sequential Pattern Discovery using Equivalence classes), an approach that produces all frequent sequences in only three database scans.It uses a vertical representation of the database by associating items to sequences and events in which they occur. Through this vertical Id-list, all frequent 1-sequences can be computed in a single database scan by incrementing counts for each new sequence id found for each item. 2-sequences are generated by converting the vertical id –list to horizontal transformation on the fly. Pruning can be done at each stage of n-sequence generated before the next n+1 sequence is discovered via temporal joins on the id-list. The search space is decomposed into sub-lattices using lattice theoretic approach, making each sub-lattice fit into memory at a time. A depth-first or breadth first search is then used to enumerate frequent sequences within each sub-lattice.
Related to SPADE is SPAM proposed by Ayres et al (2002). Ayres et al (2002) claim that previously existing approaches towards discovery of sequential patterns are breadth first algorithms which are not efficient when the patterns in the database become very long. SPAM represents sequences with lexicographical tree in some chronological order of their items. Nodes of the tree are either item or sequences. Subsequent sequences along the tree paths are generated by extending the sequence or the itemset. The tree is then traversed in a depth-first manner. At each node n, the support of each sequence extended-child and each itemset-extended is tested. The support of a generated sequence s is tested against minimum support threshold and the sequence is kept if found greater or equal to the threshold value. The process is then recursively done on the extended children of s. If none of the children of s are frequent, the node n is considered a leaf and the algorithm backtrack up the tree for another sequence path. 

Apriori-based pruning is used to reduce the search space by pruning the candidate sequence and itemset extensions. Furthermore, for efficient counting, the algorithm uses vertical bitmap to represent items in a transaction. Existence of an item in a transaction is represented by a 1 in the bit meant for the item in the transaction bitmap and a 0 if otherwise.

Wu et al (2004) claim that existing data mining algorithms do not effectively help identifying and describing documents that a user may want. They stress that these algorithms only discover frequent sequential pattern using keywords. The authors therefore propose the Pattern Taxonomy model using a tree-like data structure that describes the relationship between frequent patterns and their sub-sequences. The frequent sequences are discovered by recursively generating sequences starting from 1-term sequence until no more frequent patterns are discovered. The frequent sequences are determined by comparing their support counts with a specified minimum threshold.The sequences are then pruned to eliminate non-maximal patterns, therefore avoiding repetition and improving the precision of the model. Once the frequent patterns have been generated, a centroid is used to represent each pattern. The centroid is a weighted function calculated from occurrences of patterns in documents. 

Ren and Zhou (2005) claim that existing algorithms do not solve sequential mining problems efficiently when some aspects of the database are deleted. The authors stressed that such scenario often warrant the need to start the mining process from scratch. They therefore present a solution that provides an updated mining sequence without mining previously mined part of the database. Ren and Zhou (2005) identify two possibilities when part of the database is deleted and it is to be mined incrementally, without mining from scratch. The authors employed the method of scanning through the new state of the database after deletion only once to determine the validity of the frequent sequences generated by the old database. This satisfies the situation where old frequent sequences are no longer valid after the deletion operation. On the other hand, in case there are new cases of frequent sequences as a result of the update, new frequent 1-sequence is determined from the new state of the database by scanning the database once. This is then UNIONed with the updates old 1-sequences (in case 1). The same procedure is repeated until there no more cases of frequent n-sequences in an apriori-gen join manner. The only difference is that the candidate sequences are reduced at each stage by removing the frequent sequences, calculated from old database.

Srinivasan et al (2006) claim that most algorithms in sequential pattern discovery make several passes over the entire dataset before generating the frequent patterns. They have however stressed that their proposed algorithm, Hybrid-Apriori, makes use of significant intervals in discovering frequent patterns. This transforms the input data into a compressed form, making it an efficient way of determining frequent sequential patterns. The Hybrid-Apriori depends solely on first determining significant (tightest) intervals that satisfy user-specified support and confidence requirement. SID suites of algorithms are used to determine the right intervals. The resulting intervals are then used in determining the frequent sequences. Frequency of events within a specified interval are noted in addition to the length and strength of the intervals. Central to the discovery of frequent patterns are the concept of Interval Confidence and Pattern Confidence. The Interval confidence is the average number of occurrences of an event within an interval over a period of time. Pattern confidence, which can be likened to support count, is the minimum number of occurrence of a sequence within an interval. This is equally referred to as the minimum of the Interval Confidence of the events making the sequence.

Two different versions of Hybrid-Apriori are also defined, depending on restrictions placed on the window unit of the first event. Semantic-s generates all possible combinations of events which occur within the window units of the first event. Semantic-e on the other hand generates all possible combinations of events which start and complete within the window units of the first event.

Bodon (2005) The claim that non implementation of the apriori algorithms with the right data structure has contributed to its low performance when compared with other algorithms in the data mining area. The author introduced a data structure that claimed to improve the performance of the apriori algorithm. The trie-based implementation by Bodon (2005) represents candidate sequences with a trie. The trie is then traversed while considering transactions one after the other. The support counters for each leaf are then incremented on reaching the leaf. The trie is traversed in a depth first manner. Paths leading to leaves that can not be extended because it has no extension whose all sub-sequences are frequent becomes dead and are removed. Routing methods used for traversing include search for corresponding item, search for corresponding label and simultaneous traversal.

Yang and Kitsuregawa (2005) claim that past works in sequential pattern mining need to recursively use S-matrix, comparison or using AND operator in deciding if a sequence is frequent or not. They stress that such approaches are not efficient considering the large number of iterations needed to complete the mining operation. The authors have proposed LAPIN-SPAM to remove the inefficiency. Yang and Kitsuregawa (2005) claim to substitute the recursive use of S-matrix and ANDing with the use of ITEM_IS_EXIST_TABLE to test the candidate sequence. This table is constructed at the first scan of the database. The candidate testing is based on the condition that if an item’s last position is smaller than the current prefix position, the item can not appear behind the current prefix in the same customer sequence. The table uses bit vector to represent candidates’ existence for respective position. A value 1 means existence and 0 otherwise. The table being a 2-dimension table help discover if an item can exist after the current prefix, given a position x. To further improve the efficiency of the approach, the table is reduced in order to fit into memory as some redundant positions can be removed.

4.2 Analysis of the techniques
Buchner et al (1999) used synthetic data to test the MiDAS algorithm. They claim to have found that the result show better speed with smaller minimum support and scale–up with increasing number of visitors, a property common to other algorithm that fail to include web-specific functionalities. Zaki (2001) show that SPADE outperforms GSP with the performance gap increasing with decreasing minimum support from 1% to 0.25%. The author attributes this to the fact that simple temporal joins are performed n the id-list. The complete dataset scan for every n-sequence generated in GSP is limited to 3 database scan with SPADE. The author also claim that SPADE scales almost linearly with changes in the number of events. The approach generally outperforms GSP by factor of two and by an order of magnitude. 

Ayres et al (2002) found that SPAM outperforms SPADE and PrefixSpan by up to an order of magnitude. SPAM is better than SPADE by a factor of 2.5 on small datasets while prefixSpan outperforms SPAM slightly on very small datasets. SPAM is however better than PrefixSpan on large dataset. The authors found that SPAM requires more memory than SPADE

Comparing the performance of the approach by Ren and Zhou (2005) with the GSP algorithm in section 3, they claim that their approach generates lower number of candidate sequences. This was demonstrated by example. Equally using real-life data from EPA and NASA web logs, the n-gram model approach by Yang et al (2001) is claimed to outperform GDSF, GD-size, LFUDA and LRU prediction models. Experimental results by Bodon (2005) are claimed to show that Apriori algorithm is improved as the minimum support is reduced using search for corresponding item routing method. They also found that Search for corresponding label and Simultaneous traversal are good methods for short transaction databases.  
Yang and Kitsuregawa (2005) claim to have found that the scalability of LAPIN-SPAM is 2-3 times better than that of SPAM when different volume of datasets were used from the synthetic dataset. They also claim that the space requirement of LAPIN-SPAM is also found to be less than 10% of the one used by SPAM algorithm.

Table 4.1 shows the summary of the papers mentioned in this section and their various contributions:
	Year/Authors
	Title
	Contributions

	Cooley et al (1997)
	Web Mining: Information and Pattern Discovery on the World Wide Web
	Cleaning of web logs for mining

	Zaki(2001)
	SPADE: An Efficient algorithm for Mining Frequent sequences
	Performed mining in only 3 database scan. The approach outperforms GSP by factor of two and by an order of magnitude

	Oates et al (1997)
	A family of algorithms for finding temporal structure in data
	The discovery of frequent patterns in multiple event sequences

	Zaiane et al (1998)
	Discovering Web Access Patterns and Trends by applying OLAP and Data Mining Technology on Web Logs
	Cleaning of web logs for mining

	Cherkasova (1998)
	Improving www proxies performance with greedy-dual-size frequency caching policy
	Replacement of web-pages cached using inflation factor, past frequency of occurrence, cost and size

	Spiliopoulou (1999)
	The laborious way from data mining to web mining
	Discovery of sequences of web data with aggregated tree

	Masseglia et al (1999) 
	Incremental mining of sequential patterns in large databases
	Reduction of  candidate sequences can be reduced through incremental mining

	Ouyang and Cai (1999) 
	An Incremental updating techniques for discovering generalized sequential patterns
	Proposed solution to change in minimum support threshold when the sequence database remain unchanged

	Buchner et al (1999)
	Navigation Pattern Discovery from Internet Data
	Inclusion of domain knowledge such as navigational templates, Network topologies and concept hierarchies in addition to the discovery of access patterns in the algorithm called MiDAS

	Su et al (2000)
	A prediction system for web requests using n-gram sequence models
	Built n-gram model for predicting future request

	Yang et al (2001)
	Mining Web logs for Prediction Models in WWW Catching and Pre-fetching
	Proposal of n-gram prediction model that outperforms other well known prediction model including GDSF, GD-size, LFUDA and LRU

	
	
	

	Ayres et al (2002)
	Sequential Pattern Mining using A Bitmap Representation
	Their experimental results show that SPAM is better than SPADE and PrefixSpan on large datasets by over an order of magnitude.



	Goethal and Zaki (2003) on 
	Advances in frequent itemset mining implementations
	Implementing Apriori algorithm with the right data structure to improve performance

	Wu et al (2004) 
	Automatic Pattern-Taxonomy Extraction for Web Mining
	Proposed the Pattern Taxonomy model using a tree-like data structure that describes the relationship between frequent patterns and their sub-sequences

	Bodon (2005)
	A trie-based APRIORI implementation for mining frequent item sequences
	Implementing Apriori algorithm with trie data structure to improve performance

	Ren and Zhou (2005)
	A New Maintenance Algorithm for Mining Sequential Patterns
	Incremental mining approach when transactions are deleted. Mining without having to start from scratch

	Yang and Kitsuregawa (2005)
	LAPIN-SPAM: An Improved Algorithm for Mining Sequential Pattern
	Substituting the recursive use of S-matrix and ANDing with the use of ITEM_IS_EXIST_TABLE to test the candidate sequence

	Srinivasan (2006)
	Discovery of Interesting Episodes in Sequence Data
	Use of interval between events in devices for discovery of frequent patterns


Table 4.1 showing authors and their various contributions

5.0 PATTERN APPROACHES
Current approaches towards sequential mining problems appear to be moving away from the traditional Apriori-like solutions to pattern based. Pei et al (2000) propose a sequential mining technique for Web Access Patterns with the use of WAP-tree by recursively mining intermediate trees. The authors claim that the existing solutions of web log mining are candidate sequence generating once. This approach requires generating all possible sequences from which the frequent once are determined. This makes it time consuming and less efficient. The authors proposed a tree based solution which is claimed to address the problem of efficiently mining access pattern in web logs. Related work include Zaiane et al (1998), Cooley et al (1999), Spiliopoulou and Faulstich (1999).

Huang and Lin (2003) claim that Apriori-like algorithms performs series of scan of the database in order to discover sequential patterns. They also stress that these scans have to be in order, with k scan dependent on k-1 scan. This makes this method less efficient and rigid. The authors have therefore proposed Graph Search Technique to solve these problems. The approach is also designed to solve problems in incremental mining with increased database. Huang and Lin (2003) show how Graph Search Technique (GST) is used to remove the interdependencies of each scan of the database during apriori algorithm as found in DSG (Yen and Chen, 1996). Yan et al (2003) propose a faster mining approach to generate frequent closed-sub-sequences only. Their approach is rooted in the mining of closed itemsets demonstrated in MAFIA by Burdick et al (2001) and CHARM by Zaki and Hsiao (2002). The same can be said of CLOSET and CLOSET+ by Wang et al (2003) and Pei et al (2000)b . 

El-Sayed et al (2004) claim to have addressed the low efficiency associated with discovery of frequent patterns in sequence databases. They claim that candidate generating algorithms often require lots of database scan. The authors propose FS-miner algorithm that is claimed to perform frequent pattern discovery in only two scans of the database, in addition to incremental mining capabilities. Similar to this approach is that of Parthasarathy et al (1999) by also including incremental solutions. 
Chiu et al (2004) claim that previously existing algorithms on discovery of frequent sequences are based on anti-monotone property which prunes the non-frequent sequences according to the frequent sequences with shorter length. This way, there is need to compute support count of non-frequent sequences. The authors propose DISC (Direct Sequence Comparison) aimed at removing this need.

Pei et al (2004) claim that most of the previously existing algorithms on sequential mining are candidate-sequence generating. They stressed that this approach is less efficient in mining large sequence databases having numerous patterns and/or long patterns. The authors propose PrefixSpan, a projection-based, sequential pattern-growth approach for efficient mining of sequential patterns. Closely related to this is the work of Han et al (2000) where FreeSpan was proposed for mining frequent partial periodicity patterns in a fixed period and offsets. Ozden et al (1998) introduced cyclic association rules in a ‘perfect’ periodic pattern. 
Kui et al (2005) claim that past algorithms designed to mine Web Access Pattern (WAP) are faced with repetitive building of intermediate tree while discovering sequential patterns from the leave to the root in a bottom-up manner. They stress that such approach degenerates in performance as the support threshold decreases. The authors propose the TAM-WAP algorithm to solve this problem. TAM-WAP selectively builds intermediate trees. 
Ezeife and Lu (2005) propose PL-WAP algorithm which, they claim, completely eliminates the need to recursively mine intermediate trees by using position code of each node to identify the relationships between the nodes. The authors claim that existing web-log mining algorithms recursively mine intermediate trees which makes them less efficient. The authors claim to propose solution to finding frequent sequences in an ordered list. They claim to apply the solution to web log access patterns in order to find interesting patterns in sequence of web pages accessed by users over a period of time without recursive mining of intermediate trees. Related to this is the Graph Traversal method of Nanopoulos and Manopoulos (2001) and use of FP-tree in discovering frequent non-sequential patterns by Han et al (2004). 
Chen and Cook (2007) claim that previous attempt at finding Contiguous Sequential Patterns (CSP) did not address the problem specifically but instead apply general constraint description framework to solve the problem. They claim that this approach is inefficient due to large searching space and inefficient data structure. The authors therefore proposed an UpDown Tree based mining to eliminate these shortcomings. They claim that the GenPrefixScan approach of Antunes and Oliveira (2004) is less efficient.
5.1 The Algorithms
The WAP mine algorithm of Pei et al (2000) is based on the construction of Web Access Pattern (WAP) Tree constructed from the web log sequences after non-frequent events have been removed. The WAP tree is then mined with a recursive algorithm without the need to generate candidate sequences. The recursive algorithm achieved this by using the conditional search concept. This narrows the search space by looking for patterns with same suffix identified by linkages called event node queue. The recursive algorithm uses the divide and conquer technique which is more efficient than bottom-up approach that supports generation of candidate sequences.
Yan et al (2003) claim that previously existing algorithms in sequential pattern mining give a full set of frequent sub-sequences which satisfy minimum support threshold. They however stress that such approaches will be efficient only when the database consists of short sequences. The authors also claim that these approaches give a very low performance with very low minimum support threshold. They propose a new approach, Clospan, which generates closed sub-sequences only.

The Clospan approach of Yan et al (2003) is claimed to have been done in 2 stages— the candidate set generation and the elimination of non-closed sequence. The nucleus of the authors’ approach in the first stage is in the ability to determine and prune non-closed sequences as early as possible from projected database of a particular sequence s. When a common prefix p of s is found in the projected database, it is unlikely that such sequence will form a closed sequence. The search along that path is closed and a jump is made to the next common prefix. The check is then recursively performed by doing a depth-first search on the prefix search tree and building the corresponding prefix sequence lattice. The non-closed sequences are then eliminated from the prefix sequence lattice by checking for super sequence existence between 2 sequences and the equality of their support counts. The lesser sequence is then eliminated.

Huang and Lin (2003) state that there are 4 phases involved in the GST algorithm. The first phase generates the 1-sequence by scanning the database and filtering out the terms below the minimum support threshold. The second phase generates 2-sequence by joining the 1-sequence by itself while taking into account the customer-id and time of transaction. A transaction is also filtered out if it does not fall within a particular time interval. Two identical sequences are possible but are differentiated by their time of occurrence, whether done together or at separate times. An IRG (Item Relation Graph) is then used relate the 2-sequence generated in phase 3. The directed graph also differentiates between identical 2-sequence by using dotted edge to represent those 2-sequence that occur at the same time. The final phase then makes traverses on the IRG starting from each vertex of the graph to discover all possible n-sequence. The movement from node e to w is acceptable when they both have same customer-id and the e’s end time = w’s start time. The incremental aspect of the algorithm is done by handling new transactions separately. The items contained in new transaction are used to extract transactions from old database and the 4 phases described above are used to generate the new sequences.

El-Sayed et al (2004) propose the use of frequent Sequence Tree (FS-Tree) which depends on entries from Header Table (HT). The HT is first constructed and gives support counts of ordered sub-sequences of length 2 that are either frequent links (have support count greater than minimum support for the sequence) or potentially frequent links (have support count greater than minimum support for the links). The database is then scan the second time to construct the FS-tree from the HT. The FS-miner algorithm then mines the FS-tree by tracking the frequent links and extracting their various prefixes. The various prefixes are then used to construct a conditional FS-Tree in the reverse order from where frequent sequence is determined based on the minimum support threshold.

The algorithm also keeps the ordered sub-sequences of length 2 that are not frequent links in a non-frequent links table NFLT in readiness for a possible transition to the HT when an update occurs (addition or delete). The NFLT is used for incremental mining by updating its entries according to the database update. This therefore removes the need to start the construction from scratch. The FS-tree is then modified according to the new state of the HT.

Pei et al (2004) show that the PrefixSpan can be computed using a divide and conquer, growth pattern principle. Sequence databases are recursively projected into a set of smaller projected databases based on the current sequential patterns. Sequential patterns are then grown in each projected databases by exploring only locally frequent fragments. The projected database keeps shrinking at every stage of the recursion by projecting only suffix sub-sequences of frequent prefixes.

The DISC approach of Chiu et al (2004) is done by first generating of minimum k-sequences for each transaction as defined by the authors. The database is then sorted based these minimum k-sequences. Frequent k-sequences are then discovered by iteratively checking if the first element in the sorted minimum k-sequences is equal to the nth element of the sorted minimum k-sequences, where n is the minimum support. Such first minimum k-sequence is then regarded as being frequent. The next frequent k-sequence is then discovered by finding a conditional minimum k-sequence (for those records that generates the frequent k-sequences) which is greater than the frequent sequence found. The database is resorted to reflect the order of the newly generated minimum k-sequences. The process is repeated all over again by checking only the conditional minimum k-sequences. This way, frequent k-sequences are generated without computing the support count of the non-frequent ones.

Kui et al (2005) propose the TAM-WAP algorithm based on a prediction method that selectively builds intermediate data according to the feature of the current area. This is done by first building a P-tree where each node has two properties—the event and count of the node. Projected databases are then built based at each node of the tree. The authors then set values that help determine when best to compress the P-tree. This is done when the time saved in mining the compact P-tree is greater than the time used in building it. Each projected database is then recursively mined with an option of compressing the P-tree when it is gainful to do so.

The approach of Ezeife and Lu (2005) uses position codes generated for each node such that antecedent/descendant relationships between nodes can be discovered from the position code. The same WAP tree originally created is then mined from prefix to suffix sequence using the position codes as links thereby eliminating generation of fresh intermediate WAP trees for each sequence mined. The concept of binary tree is used in generating the position codes. Starting from the root node, the leftmost node is assigned a 1 and the next right node is assigned a concatenation of the left node (on the same tree level) and a 0. Position codes of child nodes are concatenation of the values of their parent and a 1 if it is the left child. The earlier rule applies to the right child (formed from the values of the equivalent left child on the same level).

Chen and Cook (2007) built a CSP algorithm on a pre-constructed UpDown Tree. This is based on Up and Down Trie constructed from the full suffix and full prefix of the item of interest respectively. Sequence Id for each record is then placed in the Id set of the last node (item) of the full suffix/prefix.  Nodes having no Id set and are the only child of their parents are merged with their parents. The Up/Down tries are then compressed to Up/Down trees before they are merged to form the UpDown Tree.

The tree is then mined by first creating an empty CSP set for the item of interest on each node k in the Up tree in depth first order. For each ending node of a particular node k in the Down Tree, place their Sequence Ids in an endIdSet and enqueue these nodes in descending order of it’s height in the down Tree. The next step is to dequeue the nodes until empty and for each node, check that the size of its endIdSet is less than the minimum support. The node is then added to CSP leaf set, else, its endIdSet is added to its parent’s endIdSet and the parent enqueued. The algorithm is completed by creating a CSP through concatenation of key d-gap from node k to some node j and add the CSP to the CSP set. The sequences that are not counted towards the support of any CSP, their Ids are added to the Id set of k’s parent node.

5.2 Analysis of the techniques
Implementation of Pei et al (2000) show that the WAP mine algorithm outperforms GSP in terms of speed (run time). Time difference as much as 100sec is recorded for support threshold of 10%. GSP algorithm also performs worse as the number of sequence increases. The TAM-WAP implementation by Kui (2005) show that the run time of TAM-WAP is generally shorter than WAP-mine. The difference in runtime increases with reduced minimum support threshold.

It is claimed that the experiments conducted by Huang and Lin (2003) show that GST outperforms the other Apriori and DSG algorithms in terms of execution time. Testing the scalability of GST also see its execution time increase with increase in the number of transactions. They found that gain in execution time as a result of not starting from scratch diminishes as the rate of change of database increases. There is no gain in the incremental mining when the database has changed by 100%. FS-Miner approach of El-Sayed et al (2004) show that the approach is better than Apriori algorithm when dealing with larger distinct item sets. The algorithm also scales better with decrease in the minimum support threshold level as against sharp increase in the execution time for other algorithms. A significance performance improvement is recorded against full re-computation in its incremental function.

Pei at al (2004) found that 1% minimum support sees PrefixSpan faster than GSP by the order of 2. It is also 3.5 times faster than SPADE at 0.5%. Though, there is a particular instance of data set (at 0.33% minimum support) when SPADE is slightly faster than PrefixSpan, the authors claim that PrefixSpan is generally better. Chiu et al (2004) claim that DISC-all outperforms PrefixSpan and its Psuedo version. The performance of DISC-all increases as database size increases. Yan et al (2003) found that the Clospan algorithm generally outperforms PrefixSpan. They equally show the strength of the Clospan when the minimum support was set below 0.001. They found that PrefixSpan fail to complete the generation of frequent sequences. The authors claim that Clospan outperforms PrefixSpan by over one order of magnitude when the minimum support is low and the length of pattern is long.

Ezeife and Lu (2005) equally found that PL-WAP algorithm outperforms both WAP and GSP algorithms in execution time when supports were varied from 0.8 to 10%. PLWAP algorithm is also significantly better than WAP algorithm in time performance when the database size were varied. The performance (time) of both PLWAP and WAP algorithms are close when sequence length of 10 was used. This however increased with larger sequence length with PLWAP algorithm performing better. A time difference of about 4000s was noticed with sequence length of 30. Chen and Cook (2007) claim that their UpDown Tree approach outperforms GenPrefixScan by factor of 5. Memory usage of UpDown Tree implementation scales sub-linearly as the number of sequence increases while that of GenPrefixScan scales increases greatly with increase in the number of sequence. 
Table 5.1 shows the summary of the papers mentioned in this section and their various contributions:

	Year/Authors
	Title
	Contributions

	Yen and Chen (1996)
	An efficient approach for discovering knowledge from large databases
	Apriori-like DSG algorithm

	Ozden et al (1998)
	Cyclic Association Rules
	Cyclic association rule mining in a ‘perfect’ periodic pattern

	Spiliopoulou and Faulstich (1999)
	WUM: A tool for Web utilization and analysis
	Mining patterns in Web logs

	Zaiane et al (1998)
	Discovering Web Access Patterns and Trends by applying OLAP and Data Mining Technology on Web Logs
	Mining patterns in Web logs

	Parthasarathy et al (1999)
	Incremental and Interactive sequence mining
	Incremental mining solution

	Cooley et al (1999)
	Data preparation for mining World Wide Web browsing patterns
	Mining patterns in Web logs

	Pei et al (2000)
	Mining Access Pattern Efficiently from web logs
	Use of WAP-tree for recursive mining of intermediate trees

	Pei et al (2000)b   
	Closet+: Scalable and space-saving closed iteemset mining
	Mining of closed itemsets with CLOSET+

	Han et al (2000)
	FreeSpan:Frequent Pattern-Projected Sequential Pattern Mining
	Mining frequent partial periodicity patterns in a fixed period and offsets

	Burdick et al (2001)
	MAFIA: A maximal frequent itemset algorithm for transactional databases
	Mining of closed itemsets with MAFIA

	Nanopoulos and Manopoulos (2001)
	Finding Generalized path patterns for web log data mining
	Proposed the Graph Traversal method for discovering frequent sequential pattern

	
	
	

	Zaki and Hsiao (2002)
	CHARM: An efficient algorithm for closed itemset mining
	Mining of closed itemsets with CHARM

	Wang et al (2003)
	CLOSET: An efficient algorithm for mining frequent closed itemsets
	Mining of closed itemsets with CLOSET

	Huang and Lin (2003)
	Mining Sequential Patterns Using Graph Search Technique
	Showed how Graph search Technique (GST) is used to remove the interdependencies of each scan of the database

	Yan et al (2003)
	CloSpan: Mining Closed Sequential Patterns in Large Datasets
	Generation of frequent closed-sub-sequences only

	El-Sayed et al (2004)
	FS-Miner: efficient and incremental mining of frequent sequence patterns in web logs
	Discovery of frequent sequences in only two scans of the database, in addition to incremental mining capabilities

	Han et al (2004)
	Mining frequent patterns without candidate generation: A frequent pattern tree approach
	Use of FP-tree in discovering frequent non-sequential patterns

	Pei at al (2004)
	Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach
	Recursive projection of sequence database into smaller sub-units for mining

	Antunes and Oliveira (2004)
	Sequential pattern mining algorithms: Trade-offs between speed and memory
	Proposed GenPrefixScan approach to Contiguous Sequential Mining

	Chiu et al (2004)
	An Efficient Algorithm for mining Frequent Sequences by a New Strategy without Support Count
	Direct Sequence Comparison (DISC), an approach that removes the need to compute support counts for non frequent sequences

	Kui et al (2005)
	A Top-Down Algorithm for Mining Web Access Patterns from Web Logs
	Proposed TAM-WAP that selectively builds intermediate trees

	Ezeife and Lu (2005)
	Position Coded Pre-Order Linked WAP-Tree for Web Log Sequential Pattern Mining
	Proposed PL-WAP algorithm that completely eliminates the need to recursively mine intermediate trees by using position code of each node

	Chen and Cook (2007)
	Contiguous Sequential Patterns from Web Logs
	Proposed Contiguous Sequential Mining approach using an UpDown Tree based mining approach


Table 5.1 showing authors and their various contributions
6.0 CONCLUSION 
This survey has provided an overview of pioneering and recent work in the area of web log sequential mining techniques. The nine (9) papers that are right on topic include those of Buchner et al (1999), Pei et al (2000), Yang et al (2001), Yan et al (2003), Pei et al (2004), El-Sayed et al (2004), Ezeife and Lu (2005), Bodon (2005), Kui et al (2005) and Chen and Cook (2007). 

Those categorised as highly-related papers are:Agrawal and Srikant (1995), Srikant and Agrawal (1996), Zaki (2001), Ayres et al (2002), Huang and Lin (2003), Chiu et al (2004), Ren and Zhou (2005), Yang and Kitsuregawa (2005). The work of Srinivasan et al (2006) and Wu et al (2004) are slightly related.
The papers were grouped according to the methods used and it was found that early methods are slower than most recent ones. Srikant and Agrawal (1996) claim that the Apriori method was fine-tuned in GSP and claimed to be twenty times faster.  

Later efforts by Zaki(2001) claim that SPADE outperforms GSP by factor of two and by an order of magnitude with pre-computed support of 2-sequences. Zaki(2001) generally claim that SPADE requires only 3 database scans. Ayres (2002) claim that SPAM outperforms SPADE and PrefixSpan by up to an order of magnitude. SPAM however requires more memory than SPADE. Yang and Kitsuregawa (2005) claim that the memory requirement of LAPIN SPAM was found to be 10% that of SPAM and it is 2-3 times better than SPAM.

Huang and Lin (2003) found that GST approach is better than Apriori algorithm. Its incremental functionality fails to achieve any benefit when the data changes by 100%. Pei et al (2000) claim WAP mine algorithm is 100sec faster than GSP at 10% minimum support. FS-Miner approach of El-Sayed et al (2004) show that the approach is better than Apriori algorithm. Pei at al (2004) found that PrefixSpan faster than GSP in the order of 2 at 1% minimum support. It is also 3.5 times faster than SPADE at 0.5%. Chiu et al (2004) claim that DISC-all outperforms PrefixSpan and its Psuedo version. The performance of DISC-all increases as database size increases. 

Kui et al  (2005) claim that the run time of TAM-WAP is generally shorter than WAP-mine. The difference in runtime increases with reduced minimum support threshold. Ezeife and Lu (2005) equally found that PL-WAP algorithm outperforms both WAP and GSP algorithms. The performance (time) of both PLWAP and WAP algorithms are close when sequence length of 10 was used. Chen and Cook (2007) claim that their UpDown Tree approach outperforms GenPrefixScan by factor of 5. 

	S/No
	Year/Author
	Speed
	Memory utlisation

	1.
	Srikant and Agrawal (1996)
	GSP algorithm 20 times faster than the Apriori algorithm
	N/A

	2.
	Zaki (2001)
	SPADE faster than GSP by factor of 2
	N/A

	3.
	Ayres (2002)
	SPAM faster than SPADE and Prefixspan by an order of magnitude
	SPAM requires higher memory than SPADE

	4.
	Yang and Kitsuregawa (2005)
	LAPIN-SPAM 2-3 times faster than SPAM
	LAPIN-SPAM requires 10% memory of SPAM

	5.
	Huang and Lin (2003)
	GST faster than the Apriori algorithm
	N/A

	6.
	Pei et al (2000)
	WAP algorithm is 100sec faster than GSP at 10% minimum support.
	N/A

	7.
	El-Sayed et al (2004)
	FS-Miner approach faster than Apriori algorithm
	N/A

	8.
	Pei et al (2004)
	PrefixSpan faster than GSP in the order of 2 at 1% minimum support. PrefixSpan 3.5 times faster than SPADE at 0.5%
	N/A

	9.
	Chiu et al (2004)
	DISC-all outperforms PrefixSpan and its Psuedo version. The performance of DISC-all increases as database size increases. 


	N/A

	10.
	Kui et al  (2005)
	TAM-WAP runtime shorter than WAP. Runtime shorter with smaller minimum support
	N/A

	11.
	Ezeife and Lu (2005)
	PL-WAP faster than WAP and GSP. PL-WAP and WAP close with sequence length of 10
	N/A

	12.
	Chen and Cook (2007) 


	UpDown Tree approach outperforms GenPrefixScan by factor of 5
	N/A


Table 6.1 showing performance comparison among algorithms
7.0 FUTURE WORK
The trend of approaches as been from Apriori which requires candidate sequence generation to pattern mining. Pattern mining also require mining of intermediate tree. Buchner et al (1999) suggest inclusion of domain knowledge and use of weight (importance) on web pages in sequential mining of web logs in order to improve the intelligence of results that might be obtained. “In order to truly leverage the knowledge in concept hierarchies and navigation templates for providing business intelligence, domain knowledge will be incorporated into the discovery phase”(Buchner et al, 1999).

Application of sequential mining techniques in mining DNA sequences and industry/engineering sequential process analysis are also areas of future research. “… the developments of specialized sequential pattern mining methods for particular applications, such as allowing insertions, deletions, and mutations in DNA sequences, and handling industry/engineering sequential process analysis are interesting issues for future research” Pei et al (2004).

Mining of intermediate trees was removed with the invention of PLWAP. Future effort is therefore geared towards using the PLWAP approach to other areas of sequential mining. This can also be related with content of pages visited. “Efficient data mining could benefit from relating usage to the content of web pages” (Ezeife and Lu, 2005). It is also suggested that future efforts should be directed to transformation and cleaning of web logs in readiness for mining. “The procedure for transforming web to database is still time-consuming and could be improved for web log mining” (Ezeife and Lu, 2005). It is also suggested that PLWAP can be implemented in a distributed mining and incremental mining of web logs and sequential patterns. 
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ANNOTATIONS OF SELECTED REFERENCES

1. Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Proceedings of 11th International Conference on Data Engineering (ICDE). Taipei, Taiwan, 3-14.

Problem(s) Addressed:

The authors introduced and addressed the problem of discovering sequential patterns in transactional databases where transactions are taken as sequences with each sequence containing one or more items. The authors set out to identify inter-transaction patterns, treating each transaction (itemsets) as a unit rather than treating items as a unit.

Previous Work:

This work is based on the technique of discovering patterns of items within a transaction as shown in (Agrawal et al, 1993). This method makes use of an unordered set of items whereas the problem claimed to be addressed in the paper under review makes use of ordered list of items. This work is equally related to the problem of finding text subsequences as implemented in ‘UNIX grep’ utility. However, the problem addressed here is claimed to be more complex. The authors claim that it is difficult to figure out a pattern to find in a bunch of sequences (transactions).

Approach to the problem:

The Authors proposed three algorithms, AprioriSome, AprioriAll and DynamicSome algorithm. The problem is claimed to be solved in phases. The authors break the solution into five different phases—Sort, Litemset, Transformation, Sequence and Maximal phase. The sort phase prepares the transaction database in an ordered list since the authors claim recognising sequential patterns is rested in having sequences in an ordered version. The Litemset claims to generate the set of itemsets with minimum support from where transactions (sequences) are changed by retaining those containing itemsets in the Litemset at the transformation phase. These three algorithms are then implemented at the Sequence phase. The large sequences identified at the sequence phase are then examined to remove the non-maximal once at the Maximal phase.

Implementation/Analysis:

The authors claimed to have performed the implementations of the above processes on an IBM RS/6000 530H, with clock rate of 33MHz and 64MB main memory. Customers transactions were also claimed to have been synthesized for “real” world transactions. Certain parameters such as average number of transactions per customer, Average number of items per transaction, average length of maximal potentially large sequences e.t.c. were claimed to be varied by the authors. The support is equally varied from 1% to 0.2%. The execution time for the three algorithms is found to increase as the support varies from 1% to 0.2%. DynamicSome however execute longer than the other two because of larger number candidates generated during its’ forward phase execution, suggesting it to be memory intensive. When the number of customers is also varied, the relative time is claimed to vary linearly. The same linear relationship is found when the number of items involved is varied.

Conclusion: 

The authors claim that two of the algorithms, AprioriAll and AprioriSome have comparable performance with the later performing better with lower support. The algorithm also scale-up linearly with the number of number of customer transactions and items in them. AprioriAll is claimed to perform better under certain condition when certain counts of transactions are needed.

Future Work:

The authors hope to extend this work toward studying sequential patterns across categories of items. It is also desired that constraints such as category of items and time are included in determining sequential patterns in future works.

Cited By: 

This paper has 31 citations in ieee.org, 2015 citations in Google Scholar. It is equally cited by all the other nineteen (19) papers annotated except Yang and Kitsuregawa (2005), Srinivasan et al (2006), El-Sayed et al (2004).

2. Pei J., Han J., Mortazavi-asl B. and Zhu H. (2000) Mining Access Pattern Efficiently from web logs. Knowledge Discovery and Data Mining, 396-407.

Problem Addressed:

The authors claim the existing solutions of web log mining are candidate sequence generating once. This approach requires generating all possible sequences from which the frequent once are determined. This makes it time consuming and less efficient. The authors proposed a tree based solution which is claimed to address the problem of efficiently mining access pattern in web logs. 

Previous work:

The works of Agrawal and Srikant (1995) and Srikant and Agrawal (1996) form the basis for comparison with the solution proposed. The GSP algorithm in the work of 

solutions Srikant and Agrawal (1996) is specifically linked with this work. The works of Zaiane et al (1998), Cooley et al (1999), Spiliopoulou and Faulstich (1999) are some of the related work cited by the authors.

Approach to the Problem:

The solution uses a novel data structure referred to as Web Access Pattern (WAP) Tree. Web logs are extracted from web servers and presented in form of sequence of events in a particular order. These sequences of events are then used to construct WAP tree after non-frequent events have been filtered out in the sequence. The WAP tree is then mined with a recursive algorithm without the need to generate candidate sequences. The recursive algorithm achieved this by using the conditional search concept. This narrows the search space by looking for patterns with same suffix identified by linkages called event node queue. The recursive algorithm uses the divide and conquer technique which is more efficient than bottom-up approach that supports generation of candidate sequences.

Implementation/Analysis:

The authors claim that experiments were conducted to compare the efficiency of WAP mining algorithm with GSP algorithm. Both algorithms were claimed to be implemented on 450-MHz Pentium PC with 64MB memory running Microsoft Windows/NT. The programs were written in Microsoft /Visual C++ 6.0

WAP mine algorithm shows better performance in terms of speed (run time) when support threshold is considered. Time difference as much as 100sec is recorded for support threshold of 10% as reported by the authors. GSP algorithm also performs worse as the number of sequence increases. WAP mine algorithm therefore outperforms GSP in both situations. The authors attribute this to the compact structure of the WAP tree and the novel conditional search strategies

Future Work:

The authors believe the WAP tree concept can be extended to solve some other data mining tasks in sequential pattern mining and episode mining in the nearest future.

Cited By: 
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3. Ezeife C.I and Lu Y. (2005) Mining Web Log Sequential Patterns with Position Coded Pre-Order Linked WAP-Tree. In Data Mining and Knowledge Discovery, Springer Science, 10, 5-38.
Problem addressed:

The authors claim that existing web-log mining algorithms recursively mine intermediate trees which makes them less efficient. The authors claimed to propose solution to finding frequent sequences in an ordered list. They claim to apply the solution to web log access patterns in order to find interesting patterns in sequence of web pages accessed by users over a period of time without recursive mining of intermediate trees.

Previous work:

The authors claim to show a link to the previous works of Agrawal and Srikant (1995) where sequential patterns are mined based on Apriori algorithm. Equally related work as claimed by the authors is the GSP algorithm as demonstrated by Srikant and Agrawal (1996). The authors states that the GSP algorithm is based on Apriori algorithm but 20 times faster. Nanopoulos and Manopoulos (2001) use Graph Traversal technique in discovering frequent sequences. The use of FP-tree in discovering frequent non-sequential patterns by Han et al (2004) provides some insight into the solution proposed by the authors. The most related work is the one that is claimed to have utilised Web Access Pattern tree (WAP-tree) in solving the problem relationships of patterns in sequences of web logs (Pei et al, 2000). This is a totally a non-Apriori-like approach.

Approach to the Problem:

The authors built on the tree-like solution proposed in WAP tree solutions (Pei et al, 2000). The deficiency identified by the author in this work is claimed to have been solved in this paper. Pei et al (2000) proposed a solution that first create WAP tree from the web logs before mining for frequent patterns from the suffix to the prefix sequences. The authors claim this solution is deficient as there is need to recursively create intermediate WAP trees in the process. This is memory intensive and can be likened to numerous candidate sequences generated in the Apriori-like solutions (Agrawal and Srikant (1995), Srikant and Agrawal (1996)). The authors claim to have proposed a solution that eliminates the reconstruction of intermediate WAP trees during mining. Instead position codes are generated for each node in such that antecedent/descendant relationships between nodes can be discovered from the position code. The same WAP tree originally created is then mined from prefix to suffix sequence using the position codes as links thereby eliminating generation of fresh intermediate WAP trees for each sequence mined. The concept of binary tree is used in generating the position codes. Starting from the root node, the leftmost node is assigned a 1 and the next right node is assigned a concatenation of the left node (on the same tree level) and a 0. Position codes of child nodes are concatenation of the values of their parent and a 1 if it is the left child. The earlier rule applies to the right child (formed from the values of the equivalent left child on the same level).

Implementation/Analysis:

A comparison of the performance of the proposed algorithm with other related algorithms ware carried out as claimed by the authors. The authors state that the implementation was carried out in a C++ Builder environment on a 400MHz Celeron machine with 64 megabyte memory. The synthetic data used were the ones generated from IBM Quest project.

The authors found that there the PLWAP algorithm outperforms both WAP and GSP algorithms in execution time when supports were varied from 0.8 to 10%. PLWAP algorithm is also significantly better than WAP algorithm in time performance when the database size were varied. The performance (time) of both PLWAP and WAP algorithms are close when sequence length of 10 was used. This however increased with larger sequence length with PLWAP algorithm performing better. A time difference of about 4000s was noticed with sequence length of 30.

Conclusion: 

The authors show that the proposed algorithm has been able to remove the need to recursively generate intermediate WAP trees while mining. This therefore suggests that the memory intensiveness of WAP tree algorithm has been improved with the PLWAP algorithm, making it outperforms WAP and GSP algorithm under various circumstances.

Future Work: 
The authors claim that the transformation of web logs into databases is time consuming and can be improved in future works. The authors suggest the extension of this algorithm to mine traditional transactional databases with careful attention on concurrency handling. They also state the importance of relating web mining usage results to the content of the web pages. It is also suggested that PLWAP can be implemented in a distributed mining and incremental mining of web logs and sequential patterns.

Cited By:

This paper has 15 citations in Google Scholar.

4. Ren J. and Zhou X. (2005) A New Maintenance Algorithm for Mining Sequential Patterns. In Proceedings of fourth International Conference on Machine Learning and Cybernetics, IEEE Computer Society, 1605-1610.

Problem Addressed:

The authors claim that existing algorithms do not solve sequential mining problems efficiently when some aspects of the database are deleted. The authors stressed that such scenario often warrant the need to start the mining process from scratch. They therefore present a solution that provides an updated mining sequence without mining previously mined part of the database.

Previous Work:

Zaki (2001) presented SPADE, an algorithm that generates sequence lattice composed of frequent sequences and their negative borders. The sequence lattice is then updated when the database is incremented by mining the newly added records. The updated sequence lattice determines which part of the old database needed to be re-mined. Masseglia et al (1999) show that candidate sequences can be reduced when it is generated from previously mined results. Ouyang and Cai (1999) proposed solution to change in minimum support threshold when the sequence database remains unchanged.

Approach to the Problem:

There are two possibilities identified. The authors employed the method of scanning through the new state of the database after deletion only once to determine the validity of the frequent sequences generated by the old database. This satisfies the situation where old frequent sequences are no longer valid after the deletion operation. On the other hand, in case there are new cases of frequent sequences as a result of the update, new frequent 1-sequence is determined from the new state of the database by scanning the database once. This is then UNIONed with the updates old 1-sequences (in case 1). The same procedure is repeated until there no more cases of frequent n-sequences in an apriori-gen join manner. The only difference is that the candidate sequences are reduced at each stage by removing the frequent sequences, calculated from old database.

Implementation/Analysis:

The authors demonstrated the proposed solution with an example. No program was written to strengthen their claims. From the example given, authors claim that the algorithm proposed use information generated from the last mining operation before the update. They also state that the approach produced a reduced candidate sequence when compared to the GSP algorithm.

Conclusion:

The authors claim that the algorithm presented has a better performance than starting the mining operations from scratch when a delete operation is done on the database mined.

Future Work:

The authors identified the limitation of having to scan the database on several occasions during the algorithm execution. Future study is then suggested to solve this drawback.

Bodon F. (2005) A trie-based APRIORI implementation for mining frequent item sequences. In Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, Chicago, Illinois, 56-65.

Problem Addressed:

The claim that non implementation of Apriori algorithms with the right data structure has contributed to its low performance when compared with other algorithms in the data mining area. The author introduced a data structure that claimed to improve the performance of Apriori algorithm.

Previous Work: 

The author highlights the work of Goethal and Zaki (2003) on how the importance of implementing Apriori algorithm with the right data structure can make its performance competitive with other types of algorithm implementations. The author did not give a deeper description of the work done by these authors.

Approach to the Problem:

A trie, a tree-like data structure is used in the implementation of Apriori algorithm. This is employed in the generation of support counts of candidate sequences produced by representing these candidate sequences with trie, the trie is then traversed while considering transactions one after the other. The support counters for each leave are then incremented on reaching the leave. The trie is traversed in a depth first manner. Paths leading to leaves that can not be extended because it has no extension whose all sub-sequences are frequent becomes dead and are removed.

The author also used various routing methods in determining paths to edges during traversal of the trie. The methods include search for corresponding item, search for corresponding label and simultaneous traversal. Different pruning methods for determining true candidate sequences are also proposed. They include simple pruning, Intersection-based pruning and no pruning option. Omission of Equisurport extension and transaction caching are some of the implementation strategy considered by the author.

Implementation/Analysis:

The author claim to have used web log files from the largest Hungarian news portal for the experiment. Measurements were taken on Intel Pentium 4 2.8 GHz processor, 2GB main memory with 512KB L2 cache. The author also used various minimum supports with different strategies explained above to implement the Apriori algorithm. The author found that the lower the minimum support the better the performance when search for corresponding item routing method is used. Search for corresponding label and Simultaneous traversal are good methods for short transaction databases. The author advised against a complete pruning when the transaction is short where Intersection pruning is adjudged to be better and vice versa. Transaction caching is found not to have a significant improvement on the algorithm but instead increases memory utilisation.

Conclusion:

The author shows that of Apriori Algorithm can be implemented with better performance when the right techniques and data structures are used. The author also claims that the implementation proposed outperforms the Prefixspan algorithm.

Future work: The author suggests that implementation can perform better in a cache conscious trie environment. Future studies can be directed towards this. The need to remove non-frequent items from transactions before support count operation is also suggested by the author.

Cited by: 
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Problem Addressed:

The authors claim that existing algorithms only take into account discovery of sequential access pattern from web logs. They fail to take into account some other web-specific features. The authors claim to have addressed the inclusion of domain knowledge such as navigational templates, Network topologies and concept hierarchies in addition to the discovery of access patterns in the algorithm called MiDAS.

Previous Work: 

The authors identified the work of Spiliopoulou (1999) where discovery of sequences of web data are done with aggregated tree, a similar approach to the algorithm proposed here by the authors. The works of Zaiane et al (1998) and Cooley et al (1997) also explains how web logs can be cleaned in preparation for mining.

Approach to the Problem:

The authors have introduced the concept of domain knowledge to streamline the category of web logs that should be mined. This is done via specification of navigation templates where logs complying with the specified templates are selected. Network topologies can also restrict logs to some sub-network of a large site. Logs can also be restricted by domain hierarchies such as the .com, .gov or .org URLs.

The MiDAS algorithm operates in three phases. The Apriori phase does the data reduction and data type substation. The data items lesser than minimum support are excluded. The 1-sequences are generated with their frequencies in readiness for pattern tree construction. The concept hierarchy filtering is done at this stage. The Discovery phase constructs a directed pattern tree representing the candidate sequences with their properties such as frequencies and time stamp. It also shows if sequences belong to same session. The last phase, Posteriori phase, filters based on the navigation template and network topology. This is then followed by pruning hits that though have required support threshold, but are not maximal. A sequence is maximal if it is contained in another sequence.

Implementation/Analysis:

Synthetic data were used by the authors to test the speed of the algorithm while varying the support threshold. The numbers of visitors used are 10K, 25K, 50K and 100K. Average numbers of visits by visitors used are 5 and 10 while 2 and 4 used for average number of pages per visit. The result shows better speed with smaller minimum support and scale –up with increasing number of visitors, a property common to other algorithm that fail to include web-specific functionalities.

Conclusion:

The authors have been able to include some filtering functionalities in addition to the normal traditional sequential pattern discovery. This inclusion has not in any way affected the expected behaviour of the results.

Future work:

The authors suggest that in order to fully benefit from the inclusion of domain knowledge, its use should not only be limited to filtering but should be used in Discovery phase to provide further business intelligence output.
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7. El-Sayed M., Ruiz C., Rundensteiner E.A. (2004) FS-Miner: efficient and incremental mining of frequent sequence patterns in web logs. In Proceedings of the 6th annual ACM international workshop on Web information and data management, 128-135.
Problem Addressed:

The authors state that low efficiency associated with discovery of frequent patterns in sequence databases needed to be solved. They claim that candidate generating algorithms often require lots of database scan. The authors proposed FS-miner algorithm that performs the frequent pattern discovery in only two scans of the database. Incremental and interactive mining functionalities are also allowed as claimed by the authors.

Previous Work:
The work of Han et al (2000) is a major work on which the authors have based their work. The authors claim that Han et al (2000) proposed a Frequent Pattern growth (FP-growth) which discovers frequent pattern in item sets that are unordered. Parthasarathy et al (1999) equally produced a solution that is highly related to FS-miner in that it takes care of ordered item set in addition to allowing incremental mining and interactive options (change of minimum support).

Approach to the Problem:

The nucleus of the algorithm is the construction of the frequent Sequence Tree (FS-Tree) which depends on entries from Header Table (HT). The HT is first constructed and gives support counts of ordered sub-sequences of length 2 that are either frequent links (have support count greater than minimum support for the sequence) or potentially frequent links (have support count greater than minimum support for the links). The database is then scan the second time to construct the FS-tree from the HT. The FS-miner algorithm then mines the FS-tree by tracking the frequent links and extracting their various prefixes. The various prefixes are then used to construct a conditional FS-Tree in the reverse order from where frequent sequence is determined based on the minimum support threshold.

The algorithm also keeps the ordered sub-sequences of length 2 that are not frequent links in a non-frequent links table NFLT in readiness for a possible transition to the HT when an update occurs (addition or delete). The NFLT is used for incremental mining by updating its entries according to the database update. This therefore removes the need to start the construction from scratch. The FS-tree is then modified according to the new state of the HT.

The interactive functionality allows user to vary the minimum support value. The effect of this has been taken care of by ensuring the minimum support for the sequence of length 2 links is lower than any possible value of the minimum support of the sequence. This will allow the FS-tree have enough information to mine frequent sequence for any value of minimum support (sequence).

Implementation/Analysis:

The authors implement FS miner with Microsoft anonymous Web Data Set and MSNBC Anonymous Data Set. The algorithm is also compared with PathModelConstruction algorithm and a modified Apriori algorithm. They did the implementations with Java on PC having 733 MHz Pentium processor and 512MB RAM. 

FS miner algorithm outperforms the two algorithms when dealing with larger distinct item sets. The algorithm also scales better with decrease in the minimum support threshold level as against sharp increase in the execution time for other algorithms. The incremental functionality of the algorithm is also tested against starting from scratch. A significance performance improvement is recorded against full re-computation.

Conclusion:

The authors claim to have used a compressed data structure to implement discovery of frequent sequences. They also stressed that only two scan of the database is needed to carry out the task, making it a more efficient algorithm. Additional features such as incremental and interactive functionalities have been included. The authors state that there is a significance performance gain form the incremental functionality over re-computation.

Future Work: 

No future work was started by the authors.
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Problem Addressed:

The authors claim that most algorithms in sequential pattern discovery make several passes over the entire dataset before generating the frequent patterns. They have however stressed that their proposed algorithm, Hybrid-Apriori, makes use of significant intervals in discovering frequent patterns. This transforms the input data into a compressed form, making it an efficient way of determining frequent sequential patterns

Previous Work:

The works of Zaki (2001) and Srikant and Agrawal (1995) are closely related to the algorithm proposed by the author since they are Apriori-based. The difference however lies in that the Hybrid-Apriori uses interval between events in devices to determine frequent patterns in the events while the other two algorithms use point based item sets within transactions.

Approach to the Problem:

The Hybrid-Apriori depends solely on first determining significant (tightest) intervals that satisfy user-specified support and confidence requirement. SID suites of algorithms are used to determine the right intervals. The resulting intervals are then used in determining the frequent sequences. Frequencies of events within a specified interval are noted in addition to the length and strength of the intervals. Central to the discovery of frequent patterns are the concept of Interval Confidence and Pattern Confidence. The Interval confidence is the average number of occurrences of an event within an interval over a period of time. Pattern confidence, which can be likened to support count, is the minimum number of occurrence of a sequence within an interval. This is equally referred to as the minimum of the Interval Confidence of the events making the sequence.

Two different versions of Hybrid-Apriori are also defined, depending on restrictions placed on the window unit of the first event. Semantic-s generates all possible combinations of events which occur within the window units of the first event. Semantic-e on the other hand generates all possible combinations of events which start and complete within the window units of the first event.

Implementation/Analysis:

A comparison of performance of Semantic-e version of Hybrid-Apriori and Episode Discovery (ED) algorithms were made. The authors claimed that Hybrid-Apriori performs better. The authors claim to have collected data over a month period on MavHome, an agent based Smart home. Semantic-e and Semantic-s were compared. Semantic-s generates larger number of patterns and increased the pattern length compares to Semantic-e. The authors attribute this to lesser restriction placed on the window range of Semantic-s.

Conclusion:

The authors stressed that Hybrid-Apriori algorithm presents input data in a more compressed form, and therefore lesser memory is needed to compute the algorithm. The reduced form of the inputs, which are the intervals, can also be important in making meaning from the input data rather considering them as point data.

Future Work:

The authors did not give any suggestion towards future research on the algorithm proposed.

Cited by: 
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Problem Addressed:

The authors claim that previous attempt at finding Contiguous Sequential Patterns (CSP) did not address the problem specifically but instead apply general constraint description framework to solve the problem. They claim that this approach is inefficient due to large searching space and inefficient data structure. The authors therefore proposed an UpDown Tree based mining to eliminate these shortcomings.

Previous Work:

The authors referenced the work of Antunes and Oliveira (2004) as one of the best works in the area of Sequential Pattern mining with gap constraints. Their approach, GenPrefixScan, is compared with the authors’ approach to prove the efficiency of UpDown Tree based mining. 

Approach to the problem:

The algorithm is based on a pre-constructed UpDown Tree. This is based on Up and Down Trie constructed from the full suffix and full prefix of the item of interest respectively. Sequence Id for each record is then placed in the Id set of the last node (item) of the full suffix/prefix.  Nodes having no Id set and are the only child of their parents are merged with their parents. The Up/Down tries are then compressed to Up/Down trees before they are merged to form the UpDown Tree.

The Tree is then mined by first creating an empty CSP set for the item of interest on each node k in the Up tree in depth first order. For each ending node of a particular node k in the Down Tree, place their Sequence Ids in an endIdSet and enqueue these nodes in descending order of it’s height in the down Tree. The next step is to dequeue the nodes until empty and for each node, check that the size of its endIdSet is less than the minimum support. The node is then added to CSP leaf set, else, its endIdSet is added to its parent’s endIdSet and the parent enqueued. The algorithm is completed by creating a CSP through concatenation of key d-gap from node k to some node j and add the CSP to the CSP set. The sequences that are not counted towards the support of any CSP, their Ids are added to the Id set of  k’s  parent node.

Implementation/Analysis:

The authors conducted experiment on a 1.8GHz Pentium M Laptop with 1 GB memory. The dataset is generated with AssocGen, a standard data generator for Sequential Pattern mining. The dataset contains 50-500K sequences with 10,000 different items. Comparison of GenPrefixScan with their implementation shows that UpDown Tree approach outperforms GenPrefixScan by factor of 5. Memory usage of UpDown Tree implementation scales sub-linearly as the number of sequence increases while that of GenPrefixScan scales increases greatly with increase in the number of sequence. The authors claim that UpDown tree accounted for this efficiency.

Conclusion:

The authors conclude by stressing the importance of the new data structure, UpDown Tree, as an efficient means of mining SCP in web logs. They claim to it has better performance in term of response time and memory relative to GenPrefixScan.
Future Work:

No future work is given by the authors.
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Problem Addressed:

The authors stressed that there has been no sequential mining algorithms designed to improve caching and pre-fetching of web pages and objects. Existing algorithms only make use of past frequency counts in predicting in predicting future request. The authors have proposed an n-gram based algorithm of sequential mining that is integrated with caching and pre-fetching models of web pages and objects.

Previous Work:

The authors extend the GDSF approach of Cherkasova (1998) where replacement of web-pages cached are determined by their inflation factor, past frequency of occurrence, cost and size. The work of Su et al (2000) based on n-gram sequence model was also referenced by the authors. 

Approach to the problem:

The authors claim that there is need to predict future request of web pages. This is achieved by taking into account the web log sequences from where association rules are generated to compute the confidence level of sequences scanned. Substrings of length n are regarded as n-gram without allowing gaps between adjacent symbols. Objects such as videos which are not represented in the log are associated with their parent page and their predictions based on the confidence threshold and the rules generated dynamically from Embedded Object Table (EOT). Rules are also generated from the web page sequences. Rules within a particular threshold range are kept.

The above process generates trained data (rules), subsequent sequences are tested against these patterns while checking the confidence of the new sequences against the agreed threshold. A true value sees such pattern being kept in the cache. Probabilities of future request of each page are calculated from this and added to its frequency of occurrence to calculate the replacement priority values in the cache.

The same predictive n-gram model is used to determine the pages to be pre-fetched. The pre-fetching strategy is considered when the cache is large enough to be partitioned into 2.

Implementation/Analysis:

The n-gram prediction model is tested with other models including GDSF, GD-size, LFUDA and LRU. Web logs from EPA (United States Environmental Protection Agency) and NASA were used.

The authors found that n-gram model outperforms all other algorithms in terms of hit rate and byte hit rates irrespective of the cache size. NASA data sets however give better performance because of its larger training data. The integration of the n-gram model into pre-fetching shows that the network latency is reduced on both data sets but there is a trade off of increased network traffic due to additional loading during pre-fetch operations.

Conclusion: 

The authors claim that the n-gram model has increased the efficiency of web page caching and pre-fetching by extending the GDSF algorithm. They stressed that pre-fetching is better performed with a large cache size.

Future Work:

The authors suggest the extension of this approach by taking into account other statistical features such as the data transmission rates that can be observed over the internet.
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Problem Addressed:

The authors claim that existing data mining algorithms do not effectively help identifying and describing documents that a user may want. They stress that these algorithms only discover frequent sequential pattern using keywords. The authors therefore propose a pattern taxonomy extraction model which performs the task of extracting frequent sequential patterns by pruning the meaningless ones.

Previous Work:

The authors referenced the work of Sebastiani (2002) which focused determination frequent sequences using phrases but they claim that the method is not too effective. They argued that phrase-based method has lower consistency of assignment and lower document frequency for terms. They equally mentioned the work of Agrawal and Srikant (1995) as a background paper in the area of frequent sequential mining.

Approach to the Problem:

The Pattern Taxonomy Model (PTM) is a tree-like data structure that describes the relationship between frequent patterns and their sub-sequences. The frequent sequences are discovered by recursively generating sequences starting from 1-term sequence until no more frequent patterns are discovered. The frequent sequences are determined by comparing their support counts with a specified minimum threshold.

The sequences are then pruned to eliminate non-maximal patterns, therefore avoiding repetition and improving the precision of the model. Once the frequent patterns have been generated, a centroid is used to represent each pattern. The centroid is a weighted function calculated from occurrences of patterns in documents.

Implementation/Analysis:

The authors evaluated the algorithm with TREC (Text Retrieval Conference) data collection, with 806,791 news stories. The results were compared with keyword-based implementations of Term Frequency Inverse Document Frequency (tf*idf) and Probabilistic (Pr) schema. The measures used for evaluation are Precision/Recall (P/R) breakeven points. The precision being the fraction of retrieved documents that are relevant to the topic while recall is the fraction of relevant documents that have been retrieved. The higher the P/R ratio, the better the algorithm. Ten to twenty topics were considered with 2 versions of TDM (with and without pruning).

The authors found that the pruning implementation of TDM outperforms the other three algorithms. TDM without pruning occasionally drop in performance due to the existence of non-maximal sequences. The average results however show that the two implementations of TDM are better.

Conclusion:

The authors claim that the pruning feature of TDM is a major factor that improves the performance of the model over the other two keyword-based implementations considered.

Future Work:

The authors suggest that the work can be improved by further optimizing the weighting scheme of the patterns discovered. The accuracy of the model can also be improved by making use of information from the negative documents.
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Problem Addressed:

The authors claim that Apriori-like algorithms performs serious of scan of the database in order to discover sequential patterns. They also stress that these scans have to be in order with k scan dependent on k-1 scan. This makes this method less efficient and rigid. The authors have therefore proposed Graph Search Technique to solve these problems. The approach is also designed to solve problems in incremental mining with increased database.

Previous Work:

The works of Agrawal and Srikant (1995) and Yen and Chen (1996) are some of the Apriori-like algorithm referenced by the authors. The authors claim that these Apriori-like approaches are too expensive as too many candidate sets are generated.

Approach to the Problem:

There are 4 phases involved in the GST algorithm. The first phase generates the 1-sequence by scanning the database and filtering out the terms below the minimum support threshold. The second phase generates 2-sequence by joining the 1-sequence by itself while taking into account the customer-id and time of transaction. A transaction is also filtered out if it does not fall within a particular time interval. Two identical sequences are possible but are differentiated by their time of occurrence, whether done together or at separate times. An IRG (Item Relation Graph) is then used relate the 2-sequence generated in phase 3. The directed graph also differentiates between identical 2-sequence by using dotted edge to represent those 2-sequence that occur at the same time. The final phase then makes traversal on the IRG starting from each vertex of the graph to discover all possible n-sequence. The movement from node e to w is acceptable when they both have same customer-id and the e’s end time = w’s start time. The incremental aspect of the algorithm is done by handling new transactions separately. The items contained in new transaction are used to extract transactions from old database and the 4 phases described above are used to generate the new sequences.

Implementation/Analysis:

The authors sate that GST algorithm was implemented on a PC with Athlon 750MHz, 128M memory with 40GB hard disk. Synthetic data were generated with 1000 possible items. The authors claim that the algorithm was compared with both Apriori and DSG algorithms. When factors such as average number of transactions per customer, average number of items per transaction, minimum support and total number of transactions were varied, GST outperforms the other two in terms of execution time. Testing the scalability of GST also see its execution time increase with increase in the number of transactions. The incremental mining capability was also tested by the authors. They found that gain in execution time as a result of not starting from scratch diminishes as the rate of change of database increases. There is no gain in the incremental mining when the database has changed by 100%.

Conclusion:

The authors claim that the GST algorithm outperforms the Apriori-like algorithm because it does not generate candidate sequences. They also stress that the generation of frequent sequences with GST does not follow any sequential order.

Future Work:

The authors suggest that future effort will be directed towards removing redundant paths that exists in the IRG. They also suggest an application of GST to web usage mining.
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Problem Addressed:

The authors claim that most of the previously existing algorithms on sequential mining are candidate-sequence generating. They stressed that this approach is less efficient in mining large sequence databases having numerous patterns and/or long patterns. The authors have proposed a projection-based, sequential pattern-growth approach for efficient mining of sequential patterns.

Previous Work:

The authors have referenced the work of Srikant and Agrawal (1996) where GSP, an apriori-based algorithm was proposed. The FreeSpan and SPADE algorithm as implemented by Han et al (2000) and Zaki (2001) respectively are equally referenced and used as a basis for comparison with their approach.

Approach to the problem:

The approach adopted by the authors is a divide and conquer, growth pattern principle. Sequence databases are recursively projected into a set of smaller projected databases based on the current sequential patterns. Sequential patterns are then grown in each projected databases by exploring only locally frequent fragments. The projected database keeps shrinking at every stage of the recursion by projecting only suffix sub-sequences of frequent prefixes. The major cost of the Prefixspan approach is in the generation of projected databases. The authors therefore proposed Pseudoprojection, a method of reducing the cost associated with this cost. The method makes use of an index point in representing suffixes to be projected instead of copying the whole suffixes into memory thereby saving time and memory.

Implementation/Analysis:

The authors claim that their approach was implemented and compared with GSP, FreeSpan and SPADE algorithms on 750 MHz AMD PC with 512 megabytes main memory running Windows server 2000. Both real data and synthetic data sets were used. The real data contains 29,369 customer’s web click-streams with 1,423 distinct page views. The synthetic data also contains various kinds of scenarios to test the performances of these algorithms.

When the minimum support threshold is varied with algorithms, the authors found that PrefixSpan outperforms all the other approaches. A 1% minimum support sees PrefixSpan faster than GSP in the order of 2. It is also 3.5 times faster than SPADE at 0.5%. Though, there is particular instance of data set (at 0.33% minimum support) when SPADE is slightly faster than PrefixSpan, the authors claim that PrefixSpan is generally better than all the other algorithms considered.

Conclusion:

The authors conclude that the PrefixSpan approach provides a more efficient way of discovering sequential patterns since it explores ordered growth by prefix-ordered expansion resulting in less growth points and ultimately a reduced projected database.

Future Work:

The authors suggest the need to extend the approach towards solving problems on closed and maximal sequential patterns, approximate sequential patterns and structured patterns. The application of the approach in mining DNA sequences and industry/engineering sequential process analysis are also areas of future research.

Cited by:

 This paper has 105 citations in Google Scholar. 
14. Chiu D., Wu Y. and Chen A.L.P. (2004) An Efficient Algorithm for mining Frequent Sequences by a New Strategy without Support Count. In Proceedings of 20th International Conference on Data Engineering, 375 – 386.

Problem Addressed:

The authors claim that previously existing algorithms on discovery of frequent sequences are based on anti-monotone property which prunes the non-frequent sequences according to the frequent sequences with shorter length. This way, there is need to compute support count of non-frequent sequences. The authors have proposed DISC (Direct Sequence Comparison) aimed at removing this need.

Previous Work:

The authors make reference to Srikant and Agrawal (1996) where GSP was proposed. Large numbers of candidate sequences are generated with this approach. Zaki (2001) also proposed SPADE where candidate sequences are grouped and ID-list merged for efficient management. Ayres et al (2002) also proposed SPAM to further improve merging of ID-list using vertical bitmap. The works of Pei at al (2004) also proposed a database projection approach to further reduce run time.

Approach to the problem:

The DISC strategy is based on the generation of minimum k-sequences for each transaction as defined by the authors. The database is then sorted based on these minimum k-sequences. Frequent k-sequences are then discovered by iteratively checking if the first element in the sorted minimum k-sequences is equal to the nth element of the sorted minimum k-sequences, where n is the minimum support. Such first minimum k-sequence is then regarded as being frequent. The next frequent k-sequence is then discovered by finding a conditional minimum k-sequence (for those records that generates the frequent k-sequences) which is greater than the frequent sequence found. The database is resorted to reflect the order of the newly generated minimum k-sequences. The process is repeated all over again by checking only the conditional minimum k-sequences. This way, frequent k-sequences are generated without computing the support count of the non-frequent ones.

This strategy is then combined with candidate pruning, database partitioning and customer sequence reduction as found in earlier works, leading to algorithm DISC-all. The authors also developed Dynamic DISC-all algorithm which is based on adapting database portioning strategy and DISC strategy to the growth of Non-Reduction Rate (NRR). 

Implementation/Analysis:

The authors claim that the experiment was done on Intel Pentium 4 CPU 2.8GHz with 512MB and Microsoft Xp professional. Synthetic data were used. The database use ranges from 50K to 500K. The authors found that DISC-all outperforms PrefixSpan and its Psuedo version. The performance of DISC-all increases as database size increases. The authors also found that the Dynamic DISC-all algorithm outperforms DIS-all algorithm when the NRR is varied.

Conclusion:

The authors claim that the proposed algorithms outperform all versions of PrefixSpan algorithms. They also attribute this efficiency to the non-usage of anti-monotone property that requires computation of support count for non-frequent sequences.

Future Work:

The authors suggest that the DISC strategy can be applied sequences that are weighted in real-life. They suggest its use in traversal of the internet where pages have variety of importance. DNA sequences analysis is also an area of future application of this strategy.

Cited by: 

This paper has 23 citations in Google Scholar. It is equally cited by Yang and Kitsuregawa (2005).
15. Kui G., Bei-jun R., Zun-ping C., Fang-zhong S., Ya-qin W., Xu-bin D., Ning S., Yang-yong Z. (2005) A Top-Down Algorithm for Mining Web Access Patterns from Web Logs. In Proceedings of 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Berlin, 838–843.
Problem Addressed:

The authors claim that past algorithms designed to mine Web Access Pattern (WAP) are faced with repetitive building of intermediate tree while discovering sequential patterns from the leave to the root in a bottom-up manner. They stress that such approach degenerates in performance as the support threshold decreases. The authors have proposed the TAM-WAP algorithm to solve this problem.

Previous Work:

The GSP algorithm of Srikant and Agrawal (1996) is a major background paper referenced by the authors. The author then describe how WAP-mine algorithm proposed by Pei et al (2000) discovers frequent sequences but stressed while its limitation that the TAM-WAP algorithm is meant to address.

Approach to the Problem:

The approach is based on a prediction method that selectively builds intermediate data according to the feature of the current area. This is done by first building a P-tree where each node has two properties—the event and count of the node. Projected databases are then built based at each node of the tree. The authors then set values that help determine when best to compress the P-tree. This is done when the time saved in mining the compact P-tree is greater than the time used in building it. Each projected database is then recursively mined with an option of compressing the P-tree when it is gainful to do so.

Implementation/Analysis:

The authors claim that the implementation was done on 800MHz Celeron PC with 512MB main memory and Microsoft 2000 Professional. They found that the run time of TAM-WAP is generally shorter than WAP-mine. The difference in runtime increases with reduced minimum support threshold. 

Conclusion:

The authors claim that the selective build of intermediate data accounted for the efficiency of the TAM-WAP over WAP-mine.

Future Work:

The authors fail to give a concise area of future work but they suggest that their approach can be further improved.

16. Yan X., Han J. and Afshar R. (2003) CloSpan: Mining Closed Sequential Patterns in Large Datasets. In Proceedings of 3rd SIAM International Conference on Data Mining, San Francisco, 1–12.

Problem Addressed:

The authors claim that previously existing algorithms in sequential pattern mining give a full set of frequent sub-sequences which satisfy minimum support threshold. They however stress that such approaches will be efficient only when the database consists of short sequences. The authors also claim that these approaches give a very low performance with very low minimum support threshold. They proposed a new approach, Clospan, which generates closed sub-sequences only.

Previous Work:

The authors’ approach is rooted in the concept of mining frequent closed itemsets as demonstrated in MAFIA by Burdick et al (2001), CHARM by Zaki and Hsiao (2002) and CLOSET+ by Wang et al (2003). The authors stress that these works do not take order of itemset into consideration. The authors also reference the sequential mining approach of SPADE algorithm by Zaki (2001), PrefixSpan by Pei et al (2001) and SPAM by Ayres et al (2002) but quickly stress that none of the works used closed sequential mining approach.

Approach to the Problem:

The authors divide the approach into 2 stages— the candidate set generation and the elimination of non-closed sequence. The nucleus of the authors’ approach in the first stage is in the ability to determine and prune non-closed sequences as early as possible from projected database of a particular sequence s. When a common prefix p of s is found in the projected database, it is unlikely that such sequence will form a closed sequence. The search along that path is closed and a jump is made to the next common prefix. The check is then recursively performed by doing a depth-first search on the prefix search tree and building the corresponding prefix sequence lattice. The non-closed sequences are then eliminated from the prefix sequence lattice by checking for super sequence existence between 2 sequences and the equality of their support counts. The lesser sequence is then eliminated.

Implementation/Analysis:

The authors state that the implementation was done on 1.7GHz Intel Pentium-4 PC with 1GB main memory, running Windows XP professional. Both real life data from web logs and synthetic data were used to test and compare the performance of the proposed algorithm with CommonPrefix and PrefixSpan. The authors claim that the Clospan algorithm generally outperforms these algorithms. They equally show the strength of the Clospan when the minimum support was set below 0.001. They found that PrefixSpan fail to complete the generation of frequent sequences. The authors claim that Clospan outperforms PrefixSpan by over one order of magnitude when the minimum support is low and the length of pattern is long.

Conclusion:

The authors claim that the algorithm is the only existing solution in the area of closed sequential mining. They stress the efficiency of their approach in the ability support very low minimum support computations.

Future Work:

The authors suggest the need to further explore the search space pruning property of their approach and equally incorporate user-specified constraints in the Clospan algorithm. 

Cited by: 

This paper has 94 citations in Google Scholar. It is equally cited by Pei et al (2004) and Wu et al (2004).
17. Yang Z. and Kitsuregawa M. (2005) LAPIN-SPAM: An Improved Algorithm for Mining Sequential Pattern. In IEEE Proceedings of the 21st International Conference of Data Engineering, 1222 – 1222.
Problem Addressed:

The authors claim that past works in sequential pattern mining need to recursively use S-matrix, comparison or using AND operator in deciding if a sequence is frequent or not. They stress that such approaches are not efficient considering the large number of iterations needed to complete the mining operation. The authors have proposed LAPIN-SPAM to remove the inefficiency.

Previous Work:

The authors base their approach on the SPAM algorithm proposed by Ayres et al (2002). They equally categorise GSP by Srikant and Agrawal (1996) and SPADE by Zaki (2001) as candidate generating algorithms. They claim that PrefixSpan approach by Pei et al (2001) is a pattern growth method.

Approach to the Problem:

The authors claim to substitute the recursive use of S-matrix and ANDing with the use of ITEM_IS_EXIST_TABLE to test the candidate sequence. This table is constructed at the first scan of the database. The candidate testing is based on the condition that if an item’s last position is smaller than the current prefix position, the item can not appear behind the current prefix in the same customer sequence. The table uses bit vector to represent candidates’ existence for respective position. A value 1 means existence and 0 otherwise. The table being a 2-dimension table help discover if an item can exist after the current prefix, given a position x. To further improve the efficiency of the approach, the table is reduced in order to fit into memory as some redundant positions can be removed.

Implementation/Analysis:

The authors state that the experiment was conducted on a 1.6GHz Intel Pentium PC with 1GB memory running Windows XP. Synthetic data generated by IBM data generator were used were used. Microsoft C++ 6.0 was used for the implementation of the methods. SPAM algorithm was compared with LAPIN-SPAM.

The authors found that the scalability of LAPIN-SPAM is 2-3 times better than that of SPAM when different volume of datasets were used. They also claim that the space requirement of LAPIN-SPAM is also found to be less than 10% of the one used by SPAM algorithm.

Conclusion:

The authors claim that their approach is 2-3 times faster than SPAM algorithm and this is attributed to the fact that recursive ANDing or comparison of bitmap operations is avoided. 

Future Work:

The authors suggest the application of this approach to dynamic databases as in data stream.

Cited by: 

This paper has 2 citations in Google Scholar.
18. Ayres J., Flannick J., Gehrke J., Yiu T. (2002) Sequential Pattern Mining using A Bitmap Representation. In Proceedings of ACM SIGKDD Conference, Edmonton, Alberta, 429-435.

Problem Addressed:

The authors claim that previously existing approaches towards discovery of Sequential patterns are breadth first algorithms which are not efficient when the patterns in the database become very long. According to the authors, the proposed algorithm, Sequential Pattern Mining (SPAM), is the first depth first approach to solve the problem of long sequential pattern mining efficiently.

Previous Work:

The authors referenced the work of Agrawal and Srikant (1995) as a foundation paper that states the Apriori property. The SPADE and PrefixSpan approaches proposed by Zaki (2001) and Pei et al (2001) helped the authors in proofing the superiority of their approach. 

Approach to the problem:

The algorithm proposed by the authors uses a lexicographical tree in representing sequences in some chronological order of their items. Nodes of the tree are either item or sequences. Subsequent sequences along the tree paths are generated by extending the sequence or the itemset. The tree is then traversed in a depth-first manner. At each node n, the support of each sequence extended-child and each itemset-extended is tested. The support of a generated sequence s is tested against minimum support threshold and the sequence is kept if found greater or equal to the threshold value. The process is then recursively done on the extended children of s. If none of the children of s are frequent, the node n is considered a leaf and the algorithm backtrack up the tree for another sequence path. 

Apriori-based pruning are used to reduce the search space by pruning the candidate sequence and itemset extensions. Furthermore, for efficient counting, the algorithm uses vertical bitmap to represent items in a transaction. Existence of an item in a transaction is represented by a 1 in the bit meant for the item in the transaction bitmap and a 0 if otherwise.

Implementation/Analysis:

The authors claim that experiments were performed on a 1.7GHzIntel Pentium 4 PC with 1GB main memory running Microsoft Windows 2000.  They compared SPAM with SPADE and PrefixSpan with all codes written with C++ and tested with synthetic data. When various parameters such as number of customers and average number of transactions per customer were varied, the authors found that generally SPAM outperforms SPADE and PrefixSpan by up to an order of magnitude. SPAM is better than SPADE by a factor of 2.5 on small datasets while prefixSpan outperforms SPAM slightly on very small datasets. SPAM is however better than PrefixSpan on large dataset. The authors found that SPAM requires more memory than SPADE.

Conclusion:

The authors claim that SPAM is a depth-first traversal algorithm that utilises bitmap representation of items and transaction. Their experimental results show that SPAM is better than SPADE and PrefixSpan on large datasets by over an order of magnitude.

Future Work:

The authors fail to suggest any area of future research.

Cited by: 

This paper has 161 citations in Google Scholar. It is equally cited by Yang and Kitsuregawa (2005), Yan et al (2003) and Chiu et al (2004).
19. Zaki M. J. (2001) SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning Journal, 42(1) 31-60.

Problem Addressed:

The author claim that existing algorithms for discovering frequent sequential pattern are faced with repeated database scan and use of complex hash structures which have poor locality. The author has proposed SPADE (Sequential Pattern Discovery using Equivalence classes), an approach that produces all frequent sequences in only three database scans.

Previous Work:

The author claims that the problem of discovering sequential patterns was introduced by Agrawal and Srikant (1995) when three algorithms were proposed, AprioriAll being the best. The work is further extended to GSP algorithm that is 20 times faster than AprioroAll (Srikant and Agrawal, 1996). The discovery of frequent patterns in multiple event sequences as shown in MEDD and MSDD algorithms was proposed by Oates et al (1997). The method uses the rule space directly instead of the sequence space.

Approach to the Problem:

The author decides to use a vertical representation of the database by associating items to sequences and events in which they occur. Through this vertical Id-list, all frequent 1-sequences can be computed in a single database scan by incrementing counts for each new sequence id found for each item. 2-sequences are generated by converting the vertical id –list to horizontal transformation on the fly. Pruning can be done at each stage of n-sequence generated before the next n+1 sequence is discovered via temporal joins on the id-list. The search space is decomposed into sub-lattices using lattice theoretic approach, making each sub-lattice fit into memory at a time. A depth-first or breadth first search is then used to enumerate frequent sequences within each sub-lattice.

Implementation/Analysis:

The author implemented the SPADE on 100MHz MIPS processor with 256MB main memory running IRIX 6.2. It was compared with GSP algorithm using the same synthetic data as used in GSP. Equally, real data sets are used to test the algorithms. Several database factors such as number of transaction and database size were varied. The author found that SPADE outperforms GSP with the performance gap increasing with decreasing minimum support from 1% to 0.25%. The author attributes this to the fact that simple temporal joins are performed n the id-list. The complete dataset scan for every n-sequence generated in GSP is limited to 3 database scan with SPADE. The author also claim that SPADE scales almost linearly with changes in the number of events.

Conclusion:

The author stress that SPADE is a better approach to discovering of frequent sequences when compared to GSP. The approach outperforms GSP by factor of two and by an order of magnitude.

Future Work: 

No future work is specified by the author.

Cited by: 

This paper has 377 citations in Google Scholar. It is equally cited by Yang and Kitsuregawa (2005), Yan et al (2003), Ren and Zhou (2005), Ayres et al (2002), Srinivasan et al (2006), Pei et al (2004) and Wu et al (2004).
20. Srikant R. and Agrawal R. (1996) Mining Sequential Patterns: Generalization and Performance Improvements. In Proc. 5th Int. Conference Extending Database Technology (EDBT), Springer-Verlag, Avignon France, 3–17.

Problem Addressed:

The authors claim that the problem of discovering sequential patterns with earlier approach fail to take into account time constraints in the sequence to be considered. They also stress that existing approach have rigid definition of transactions. Grouping of items into hierarchies (taxonomies) can also found to be missing in the earlier algorithm. The authors have proposed GSP (Generalized Sequential Patterns) to cater for these limitations.

Previous Work:

The authors claim that the problem of discovering sequential pattern was introduced by Agrawal and Srikant (1995). They proposed three algorithms, AprioriAll being the best. The algorithms fail to handle time constraint, sliding windows and taxonomies. They claim that AprioriAll is faced with the limitation of database transformation and modification to handle sliding window. The authors also referenced the work of Han and Fu (1995) where user-defined taxonomies in association rules were addressed. Mannila et al (1995) also presented problem of discovering frequent episodes in a sequence of events.

Approach to the problem:

The authors state that multiple passes are made over the data. The first pass considers the items individually and generates the frequent 1-sequence for those with support count greater than the minimum support. The 1-sequence set is used to generate the next set of candidate sequences by a join operation with itself. The support for these candidate sequences are also calculated using hash-tree data structure and compared to the minimum support threshold. Pruning operation is also performed to remove those candidate sequences whose sub-sequences are not frequent. The inclusion of taxonomies is done by extending the datasets to include all the ancestors of each item before GSP is performed.

Implementation and Analysis:

The authors did not reveal the hardware specification and details of the experiments done due to space limitation. They claim that both synthetic and real-life datasets were used to compare AprioriAll and GSP. The authors found that GSP is between 30% to 5 times faster than AprioriAll with synthetic data as the minimum support is reduced. Real life data show that GSP is 2 to 20 times faster than AprioriAll. The authors stress that GSP scales linearly with number of data-sequences. The effects of time constraint and sliding window were also tested. The authors found that there were no performance degradation with minimum gap constraint but 5% to 30% performance penalty was found when maximum gap constraints were specified.

Conclusion:

The authors claim that the GSP algorithm is much faster than AprioriAll and that it gives a generalized sequential pattern which guarantees finding all rules that satisfy the minimum support threshold.

Future Work:

The authors fail to suggest area of future research.

Cited by: 
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