University of Windsor

(CS-03-60-510)
Survey Report

[image: image1.wmf]
Architecture of Resource Scheduling

On

Computational Grids

 Submitted to: Dr Richard Frost
 Submitted by: Mona Aggarwal

Table of Contents

3Abstract

41.
Introduction

41.1.
Scheduling Systems

51.2.
Cluster Scheduling

61.3.
Grid System Taxonomy

71.3.1.
Resource Management System

81.4.
Grid Scheduling Problem

92.
Grid Scheduling

92.1.
Grid Scheduling Model

102.1.1.
Application Model

102.1.2.
Resource Model

102.1.2.1.
The Resource Information Service

112.2.
Globus Architecture for Grid Scheduling

132.3
Grid Scheduling Terminology

132.3.1
Jobs: Kendall Notation

132.3.1
Application and Processes

132.3.2
Allocation

132.3.3
Preemptive / Non Preemptive assignment

142.3.4
Resource Co-allocation

142.3.5
Migration

142.3.6
Space-sharing

142.3.7
Time-sharing

142.4
Grid Scheduling Approaches

142.4.1
First-Come-First-Serve (FCFS)

152.4.2
Backfilling

152.4.3
Gang Scheduling

152.4.4
Genetic Algorithms (GAs)

152.4.5
Directed Acyclic Graphs (DAG) Scheduling

162.4.6
Priority Queuing

162.5
Types of Jobs on Grid

172.6
Grid Scheduler Performance Criteria

183.
Classification of Grid Schedulers

183.1.
Organizational structure based scheduler

183.1.1.
Hierarchical Schedulers

193.1.2.
Centralized schedulers

193.1.3.
Decentralized Schedulers

203.2.
Application / Resource based Scheduler

203.2.1.
User-centric scheduler

203.2.2.
Service-provider centric scheduler

203.2.3.
Economy based scheduler

203.3.
Other characterizing features:

213.3.1.
Online vs. Batch Schedulers

213.3.2.
Preemptive / Non-preemptive based schedulers

224.
Information Retrieval for Grid Schedulers

224.1.
Resource Information retrieval

224.2.
Meta computing Directory Service (MDS)

244.3.
Network Weather Service (NWS)

244.3.1.
Architecture of a NWS Resource-set

254.3.1.1.
NWS Performance Sensors

265.
Existing Grid Schedulers

265.1.
Condor

275.2.
Condor-G

285.3.
AppLeS Scheduler

295.4.
Nimrod-G Resource Broker

305.5.
GrADS Scheduler

315.6
The Legion Scheduler

325.7
TITAN

346.
Concluding Remarks

346.1.
Performance Goals for a Scheduler for the Global Grid

346.2.
Architecture of a Scheduler for the Global Grid

35Appendix – I

52Appendix – II

68Appendix – III

69Appendix – IV

71Appendix – V

73Appendix – VI

Abstract

This report is a Survey of the architecture of schedulers for grid systems. The schedulers being used in various grid systems have been designed for the applications that the grid is designed to handle. The survey presents a detailed study of the schedulers that are in use, it describes the architectural model in each case and it compares the features of the available schedulers. The survey contains the architectures of the available schedulers in detail and the architecture of the scheduler for the global grid as a conceptual model.

A scheduler on a grid has to deal with a continuous load of diverse applications. It has a dynamic, geographically distributed and heterogeneous set of resources. It is designed to map jobs to resources with certain specified performance goals. The survey describes the methods of obtaining information about the resources, the performance goals that a scheduler may attempt to achieve and the process of mapping jobs to resources.

1. Introduction

“A computational grid is a hardware and software infrastructure that provides dependable consistent, pervasive and inexpensive access to high-end computational capabilities” (Foster j, 1998). Today the users visualize a grid in a number of different ways. The common grids are research grids. A number of academic-research organizations have set up grids both for high performance computing as well as for grid research. Most of such grids are an inter-connection of clusters, usually through a dedicated wide area network. In general a cluster consists of homogeneous, dedicated and tightly coupled workstations that may be used to process high-performance jobs. A grid, on the other hand, consists of heterogeneous and intermittently available workstations. Whereas a cluster is expected to be located at a single laboratory or office, the workstations on a grid may be widely distributed geographically.

The structure of a grid is heterogeneous and dynamic. Moreover it is expected to be used for a wide variety of applications. Scheduling of jobs on a grid or a cluster is the task of allocation of jobs to the available nodes. The objectives of grid scheduling are fast turn-around time and maximum throughput (Wright, 2001). Scheduling in a cluster is a relatively simpler task. On a grid, which is dynamic, heterogeneous and geographically spread out and which caters to highly diverse applications, scheduling is a NP-complete problem (Buyya I, 2000). For any user, whether on a cluster or a grid, the turn-around time is required to be low. But the objectives of a service provider on the grid may be a high throughput in grids with a high load. For lightly loaded grids, the objective may be to distribute the jobs to all the nodes in an equitable manner. Scheduling has to take into account the objectives of the service provider, the needs of the user and the requirements of the applications.

1.1. Scheduling Systems

Grids have evolved from a natural progression of parallel processing systems, distributed processing systems and a metacomputing system.

Parallel processing systems can be classified into two types:

1. Shared Memory Processing systems

2. Clusters of workstations

Centralized systems designed to cater to the needs of a large number of users are usually multi-processor systems with a shared memory.

A distributed system consists of heterogeneous systems connected in parallel. A grid is a dynamic and geographically spread-out distributed system.

There are some common properties that a scheduler has to satisfy, whether it is for a parallel or for a distributed system or for a grid.

A scheduler is designed to satisfy one or more of the following goals:

· Maximizing system throughput

· Maximizing resource utilizations

· Maximizing economic gains

· Minimizing the turn-around time for an application.

In addition a scheduler may be designed to follow a specific or an adaptable scheduling policy. Optimization of scheduling process can be attempted when performance goals and scheduling policies have been defined.

Since Grid technology is developed as an extension of technologies used in clusters and distributed systems the next section describes the characteristics of scheduling in clusters.

1.2. Cluster Scheduling

A cluster consists of machines connected together through a high-speed network. A cluster consists of homogeneous, dedicated and tightly coupled workstations. A cluster is managed by a single administrative entity. A cluster has a server, which interacts with the users called clients. The server also has information about the all computer nodes called Agents in the cluster. A client may be connected to the server through Internet. The client has to inform the server about the requirements of the application. The inter-dependency of the processes of the application has also to be specified either through a script or through a GUI interface for application building. A cluster can run both sequential as well as parallel jobs.

According to (Abawajy a, 2003), “The key to making cluster computing work well is the middleware technologies that can manage the policies, protocols, networks, and job scheduling across the interconnected set of computing resources.” The two main goals of cluster scheduling are to obtain maximize the utilization and throughput.

The schedulers most commonly used by the high performance community are Maui scheduler (Jackson, 2001) and PBS scheduler (Goldenberg, 2003).

These schedulers allow the administrator to set the following parameters:

· To set multiple queues for different job classes

· To set priorities and scheduling policies for each queue.

· To treat interactive jobs differently from non-interactive jobs.

Even though the facility to set the parameters is useful to the administrator, if the clusters are served with continuously varying applications, optimization of scheduling remains a desirable but an elusive goal.

1.3. Grid System Taxonomy

Grid systems can be classified, into three types (Buyya c, 2002).

· Computational grids

· Data grids

· Service grids
[image: image2.png]Grid Systems—

Computational

Grid

— Dala Grid

Service Grid

Distributed Supercomputing

L High Throughput

On Demand

Callaborative
Mullimedia

Figure 1-1: Grid Systems Taxonomy (Rajkumar Buyya, 2002, page: 3)

The aggregate computational power of a computational grid is larger than the computational power of any single constituent of the grid. High Performance computing problems, which require large computational power, use the grids for parallel computing. (Buyya c, 2002).

A data grid provides large data repositories such that both the data storage as well as the users may be distributed over a large geographical area. Users may mine the data for studies in different ways. As an example, the astronomers, as a loose group, have been able to create a large data grid. Large telescope systems continuously scan the outer space and feed the data into large data repositories. These are then used by astronomers from around the world. (Buyya c, 2002).

Service grids provide services not available at a single site from a single machine. Examples of such grids are On Demand computing, Multimedia computing or Collaborative computing.

Grids may also be classified on the basis of administrative domains covered by it. An IntraGrid may be controlled by a single, multi-location organization. Sharcnet is an example of such a grid. This consists of big clusters at 4 universities connected by a dedicated Internet.

An Extra Grid may couple two or more grids. ERP systems of today use such grids whereby a business entity may be connected to its suppliers and its sales organizations.

Global Grid is the kind of grid being conceptualized by the Global Grid Forum. Such a grid would have a large number of resource providers connected through Internet to the users. Middleware for such a grid is being developed by a number of research groups of GGF and at various Universities.

1.4. Resource Management System

[image: image3.png]

Figure 1-2: Resource Management System Abstract Structure

(Rajkumar Buyya, 2002, page: 5)

A scheduler is a component of the Resource Management System (RMS) on a grid. Figure 1-2 shows the architecture of a general RMS. Resource Information from the sensors of the service-provider forms one input of RMS. The other input is the Resource Requests from the users. The resource information inter-acts with the Discovery module of RMS. The State Estimation system converts the information, through the Naming system to a Resource Information database. The Resource Monitoring system maintains the Historical Data and the present Resource Status databases. The Dissemination system may be used to convey the resource information to users on the grid. The Request Interpreter may format the request, or in some cases like the TITAN system (Spooner a, 2003), it may generate estimates of execution time for each task of the job request. The Resource Broker will negotiate for the resources. It may use Resource Reservation module to save information about the reserved resources in the Reservations database. The Scheduling system will put the job in the Job Queues. Then the Execution Manager sends the job for execution to the allocated resources. The Job Monitor continuously monitors the job, as it is being executed. It stores the state of the job at checkpoints in the Job Status database.

1.5. Grid Scheduling Problem

(Foster j, 1998) defines the responsibilities of a grid scheduler as the “discovery of available resources for an application, mapping the resources to the application subject to some performance goals and scheduling policies and loading the application to the resource in accordance with the best available schedule.”

In addition a grid scheduler must provide the facility of checkpointing so that a job can be migrated, along with its state, to a different node. Migration may be required in case a pre-emptive scheduling policy is considered due to failure of some nodes or some part of the network. Facilities of suspension of processing, resuming the processing or aborting a job are also usually provided in grid schedulers.

2. Grid Scheduling

Grid Scheduling is used to “efficiently and effectively manage the access to use grid resources by the users” (Buyya c, 2002). According to (Casavant, 1988) grid scheduling problem consists of three main components.

· Consumer(s).

· Resources(s).

· Policy.
[image: image4.png]KKKKKKK

Figure 2-1: Scheduling system (Casavant, 1988, page: 142)

The policy chosen for implementing a Scheduler would affect both the Users as well as the Service Providers.

2.1. Grid Scheduling Model

A Grid Scheduling Model consists of the following facilities (Berman d, 1999):

· Prediction of performance for every job that is to be processed by the grid: Since availability of resources may be continuously changing and the jobs may have a great deal of diversity, performance may be a sensitive function of time. The scheduler of an application and the resource provider can negotiate the use of resources only if the performance, that is expected when the application is processed, can be predicted with a reasonable degree of confidence.

· Use of dynamic information to work out the schedules: In a grid environment, the state of available resources is highly dynamic. The scheduler should be able to use ‘the parameters of the present state’ and the ‘meta data about predictions’ to work out the schedules with a greater degree of stability.

· Adaptability of schedules: After negotiations, the user and the service provider may agree on the basis of the predicted performance and the scheduler may be able to map the application to the nodes. However the available resources may change. Hence the schedule may have to be modified and the performance may have to be re-worked out. The performance should be reasonably stable even when the mapping has to be changed.
2.1.1. Application Model

As defined by (Feitelson a, 1998), grid applications are divided into processes, which may be following a serial flow or a networked flow. The inter-dependency has to be specified by the user. The nature of flow of processes would determine the maximum number of nodes that may be used for a faster completion of the job, if the nodes are available.

The flow can be represented by a directed acyclic graph (DAG) (Feitelson b, 1997), where each vertex represents a process that may be executed in one node. The computation cost of the process is called the weight of the vertex. Each edge corresponds to the communication and inter-dependence constraint between processes. The weight of the edge is the communication cost, which depends upon the bandwidth and latency of the communication channel and the quantum of the data required to be transferred.

Applications can be interactive or non-interactive, real-time or non-real-time. Any special requirements of resources for a particular process may determine its scheduling on grid nodes.

2.1.2. Resource Model

(Berman d, 1999) describes a computational resource in terms of CPU speed, memory size and the available time-slots. Other specialized features can be vector computers, pipe-lined systems etc. Since it may be difficult to specify the computer power of a node, one of the possible ways can be to specify it in terms of a benchmark test. Thus supercomputers in top 500 lists are specified on the basis of the Linpack benchmark test. Policy considerations for use of the resource may be time-shared vs. non-time-shared, dedicated vs. non-dedicated, pre-emptive vs. non-pre-emptive.

2.1.2.1. The Resource Information Service

The resource information service in a grid may be centralized, decentralized or hybrid. A centralized service may contain information about the whole of the grid. Thus theoretically it may be able to lead to optimized scheduling. The disadvantages are that the centralized information service is a single point of failure. An example of a centralized information service is the Globus Meta Directory Service (MDS) given by Foster. (Foster I, 1997).

The Decentralized information service will store information about each node at the node. Querying the node can provide the necessary information to a scheduler. But the querying process may have a large overhead. Network Weather Service (Wolski, 2003) is an example of a decentralized resource information service.

The hybrid scheme is a hierarchical scheme where at the highest level of a group, the information is stored in a centralized entity. This information may be about the sources of information about the resources over the entire system. But the information about each resource or a group of resources is stored in a decentralized manner.

2.2. Globus Architecture for Grid Scheduling

Globus tool-kit is being used widely and nearly every scheduler is being designed to be compatible with it. So it is important to define certain parts of the Globus architecture, since these parts are used as a component of the scheduler architecture in most of the cases. In this Section, the architecture of the Globus Resource Manager, which includes the allocation component, is described.

Meta Directory Service (MDS) (Foster I, 1997), which is a part of the Globus tool-kit and Network Weather Service (NWS) (Wolski, 2003) are used by many schedulers for obtaining resource information.
Globus uses Grid Resource Allocation Manager (GRAM) as the Local Resource Manager (LRM) (Foster I, 1999). Information Service and the database store the information about the resources including the nodes and the network. Globus Meta Directory Service (MDS) (Foster I, 1997) and Network Weather Service are examples of systems that can be used by an Information Service.

Figure 2-2-1 shows the Globus Architecture for Reservation and Allocation (GARA). GARA provides for dynamic discovery, advance and immediate reservation, and management of resources for networks, processors and disk memories. An application may have to use the resources at multiple sites. At each site a Grid Resource Allocation Manager (GRAM) is used as the Local Resource Manager (LRM) (Foster I, 1999). A Co-allocation agent is used to map multiple resources to an application. Such an agent may use one or more GRAM(s). The resource Information Service may be provided by an MDS or a NWS system.

[image: image5.png]resource spec
wht, where, wh

Tformation], Resourcg Co-reservation Co-allocation
service [*discover? agent agent

GRAM GRAM GRAM

Resource Resource Resource

Figure 2-2-1: GARA Resource Management Architecture (Czajkowski b, 1997, page: 12)

Figure 2-2-2 provides the major components of GRAM. The Figure shows that a GRAM client obtains information from MDS. The GRAM Reported sends information about the resource to MDS. The GRAM Client uses the Gatekeeper to load a task to the local resource set. The Gatekeeper uses the Grid Security Architecture (GSA) for authentication and other security services. The JobManager parses the tasks by using the Resource Scripting language (RSL) library and conveys it to the Local Resource Manager for final allocation to the local resources. The GRAM Client is able to obtain the status of the job through the Gatekeeper and the JobManager.

[image: image6.png]GRAM Client

GRAM

MDS client APLcalls
10 locale resoirces

-

Update MDS witlh
resource statg

jent API calls

to request repouree allocation

and pr

ss creation

Authentication|

Create

Globus Security
Infrastructure

Job Manager

RSL Library

informati

Query current status|
of resource

Request

Mo
control

n

Allocate &
ereate processes

[]
(==

[]
(==

Figure 2-2-2: Major Components of GRAM Implementation (Foster I, 1999, page: 4)

In the new upgrades to the Globus tool-kit, a Lightweight Directory Access Protocol (LDAP) has been developed as the standard interface for both MDS and NWS. This makes it possible for GARA to use either MDS or NWS as the source for resource Information Service.
2.3 Grid Scheduling Terminology

2.3.1 Jobs: Kendall Notation

This is used to specify how the jobs can be distributed over multiple nodes available on a grid for simulation or for testing on a test-bed. The generalized notation uses six parameters A/S/N/B/K/SD. A: The distribution of arrival of applications. S: The distribution of service time where service time is the time spent by a job in the system. For study of grid systems, the usual distributions used for applications and service time is Exponential or Deterministic. M and D indicate these respectively. N: the number of servers, B: the number of buffers (storage capacity), K: the population size of jobs, SD: Service Discipline. The service discipline can be First Come First Serve (FCFS), Shortest Job First (SJF), Specified Priority (P), Round Robin (R-R) and Multilevel Queue (MLQ).

2.3.1 Application and Processes

A grid application is a job, which a user wants to process on a grid. The application may consist of a number of processes or tasks. Inter-dependencies among the processes will determine the number of machines that can be used in parallel to process the application.

2.3.2 Allocation

The term allocation is considered equivalent to scheduling. Sometimes the word allocation of resources is considered from the perspective of the service provider whereas scheduling is expected to be of the user’s application.

2.3.3 Preemptive / Non Preemptive assignment

Pre-emptive assignment: Assign a task to a new node ever after the task has been partially executed at another node. This would require transfer of the state of the process also. This may be used by Round-Robin or Reservation method of scheduling. Or it may be used to avoid the hogging of a node by a very long process. This may be a costly method to implement.

Non Pre-emptive assignment: Allocation of a process to a node, before the execution of the process starts.

2.3.4 Resource Co-allocation

 A metacomputing system may require an allocation of more than one resource from multiple sites for the job to be completed. The allocation then depends upon information from multiple resource managers. An allocation of resources in such an environment is called co-allocation (Czajkowski b, 1997).

2.3.5 Migration

In this approach the main idea is to “dynamically migrate tasks of a parallel job. Migration delivers flexibility of adjusting your schedule to avoid fragmentation. Migration is particularly important when collocation in space and/or time of tasks is necessary” (Zhang a, 2003).

2.3.6 Space-sharing

In the Space-sharing approach, jobs can run concurrently on different nodes of the grid at the same time, but each node is exclusively assigned to a job. Submitted jobs are kept in a priority queue, which is always traversed according to a priority policy in search of the next job to execute. (Zhang a, 2003).

2.3.7 Time-sharing

The Time-sharing approach allocates time slices to different jobs. Even if a job is not completed in its pre-allocated time-slice, the partially executed job will be shifted and the next job will be processed during the “next” time-slice. (Zhang, 2003).

2.4 Grid Scheduling Approaches

2.4.1 First-Come-First-Serve (FCFS)

The job arrival times and the arrival rates may vary for a grid. A grid scheduler that follows the FCFS policy will allocate the jobs to compute nodes in the order of their arrival. The jobs, which arrive when all the resources are in use, will wait in a Wait queue. “This strategy is known to be inefficient for many workloads as a large number of jobs waiting for execution can result in unnecessary idle time of some resources” (Schwiegelshohn b, 2000).

2.4.2 Backfilling

Backfilling refers to the case, where a task at the back in the Wait queue, is chosen on the basis of some criterion to be processed before the first task in the Wait queue is taken up for processing. Sometimes when a compute node becomes free, it may not be possible to allocate the first task in the wait queue due to dependencies among the tasks. In such a case rather than keeping the node idle, an out-of-order task may be allocated to the free node.

Two common variants are Easy and Conservative backfilling. In Conservative backfilling, the out-of-order task must be chosen such that the first job in the Wait queue is not delayed. “The performance of this algorithm depends upon a sufficiently large backlog.” (Schwiegelshohn b, 2000)
2.4.3 Gang Scheduling

In this approach the main concept is to “add a time-sharing dimension to space sharing using a technique called gang scheduling or coscheduling. This technique virtualizes the physical machine by slicing the time axis into multiple virtual machines. Tasks of a parallel job are co-scheduled to run in the same time-slices (same virtual machines) “(Zhang a, 2003).
2.4.4 Genetic Algorithms (GAs)

GAs are useful for optimization problems, in cases where the number of parameters, which affect the performance are large. GAs begins with a potential set of solutions, called the population of the search space and a fitness function, appropriately defined for the problem on hand. GAs then try to obtain an optimum solution by using the processes of cross-over and mutation. “GAs are widely reckoned as effective techniques in solving numerous optimization problems because they can potentially locate better solutions at the expense of longer running time. Another merit of a genetic search is that its inherent parallelism can be exploited to further reduce its running time” (Kwok, 1999).
2.4.5 Directed Acyclic Graphs (DAG) Scheduling

A job, which is to be run on a parallel system of computational nodes, can be represented by a weighted-node and weighted-edge DAG. The weight of a node is the time that it would take to be processed. The directed edges define the dependencies. The weight of the edges may represent the communication delays.

“The objective of DAG scheduling is to minimize the overall program finish-time by proper allocation of the tasks to the processors and arrangement of execution sequencing of the tasks. Scheduling is done in such a manner that the precedence constraints among the program tasks are preserved. The overall finish-time of a parallel program is commonly called the schedule length or makespan” (Kwok, 1999).
2.4.6 Priority Queuing

Priority Queuing has two sub types such as Head of Line (HOL) for a fixed priority and Dynamic Queue (DQ) where each arriving job is allocated a priority. Its priority level determines the position of the job in the queue. (Zhang a, 2003)
2.4.6.1 Priority Queuing Methods: Three Issues

While implementing priority queuing, two issues have to be considered to avoid pitfalls.

1. Starvation: When high priority processes continuously enter the queue, lower priority processes may not be able to get processing time. If pre-emption is allowed, even if a low priority process were to start getting processed, it may be pushed out as soon as a high priority process was to come in. In such a situation, the lower priority processes are said to face starvation.

Solution: Increase the priority level of a process depending upon the waiting time in the queue of the process. Thus over a period of time an initially low-priority process may be able to beat a high-priority process, which has just entered the queue.
2. Deadlocking: A high priority process may need some resource, which can be created only when a lower priority process is executed. However since the high priority process is supposed to be processed first, a deadlock may occur, in that neither the high priority nor the low priority process may be executed.

Solution: Priority Inversion: The priority of the lower-priority process may be temporarily boosted so that it may be executed, before the high priority task is processed.

2.5 Types of Jobs on Grid

A grid has heterogeneous dynamically available resources. In addition it handles a great diversity of jobs. A grid may have three different categories of jobs defined by (Subramani, 2002):
(i) Local jobs: The node or a cluster may have to process local jobs. Usually such jobs have a higher priority on locally available resources.

(ii) Batch jobs: considered for batch processing: such jobs may be required to be processed as the resources become available. The jobs may have to follow a queuing discipline, as specified by the administrator.

(iii) Reserved jobs: Reserved time-slot jobs: such jobs may have to be processed as the highest priority jobs, during the pre-specified time slot. Or these jobs may have pre-specified deadlines.

Each job may consist of a number of processes. The processes may have a variety of inter-dependencies. If the interdependency is not serial in character, it may be possible to run different processes of a single job in parallel on different nodes. In addition a grid scheduler may handle a large variety of jobs from a multiplicity of users. Thus on a node may be mapped processes from multiple jobs in succession.

The jobs may be inter-active or non-interactive. These may be real time jobs having deadlines or batch jobs. The jobs may have different levels of priority. Moreover each site on the grid may have a different scheduling policy. Such diverse jobs on intermittently available resources make the grid scheduling highly complex.
2.6 Grid Scheduler Performance Criteria

Since grid applications have great diversity, it is not possible to specify a single test of performance criteria, which can be applied to all cases. Depending upon the environment, some of the following criteria may be used to evaluate the performance of a scheduler. (Berman d, 1999).

· Improvement from the User’s perspective

· Improvement from the Service Provider’s perspective

· Minimum overhead of the scheduler

· Fault tolerance

· Scalability

· Applicable to a wide diversity of applications and grid environment.
3. Classification of Grid Schedulers

Many scheduling systems for grid environments have been designed. However each of the schedulers has been designed for a specific grid structure and each has some unique features.

3.1. Organizational structure based scheduler

The grid schedulers can be classified into three categorizes based on its organizational structure

given by (Hamscher, 2002).

3.1.1. Hierarchical Schedulers

[image: image7.png]/Mlhr

H] J R

Figure 3-1: Hierarchical scheduling (Hamscher, 2002, page: 4)

A hierarchical structure consists of local schedulers and higher-level schedulers, which work in concert. However such a system may not be able to provide local autonomy for setting local scheduling policies.

3.1.2. Centralized schedulers

[image: image8.png]

Figure 3-2: Centralized scheduling (Hamscher, 2002, page: 3)

In a centralized scheduler, all applications are added to a common queue of a centralized scheduler. Each site has no queue and scheduling function is not performed at the sites. Since the central scheduler has information about all the jobs and all the resources, conceptually it should be able to provide an optimal solution. However such a scheduler is slow and not scalable as the grid grows.

3.1.3. Decentralized Schedulers

[image: image9.png]-nm_ﬁm

Figure 3-3: Decentralized scheduling (Hamscher, 2002, page: 5)
A decentralized scheduler has local queues at each site. It responds to requests for service from local users and from other schedulers.

Such a system has no knowledge about user requests received at other schedulers. Nor does it know about the resources at other sites. So the scheduling may not be optimal. But such a system is fault-tolerant. It can also use scheduling policies as required by the local administrator.
3.2. Application / Resource based Scheduler

3.2.1. User-centric scheduler

The User-centric Performance goals can be defined as follows: (Berman d, 1999)

· Minimize execution time

· Minimize the waiting time in the ready-to-process queue

· Maximize speed-up on the user’s own platform i.e. minimize the turn-around time

· Minimize process slow-down, defined as the ratio of turn-around time to the actual execution time.

Application level scheduler AppLeS (Berman b, 2003) is a User-centric scheduler.

3.2.2. Service-provider centric scheduler

The Service-centric Performance goals can be defined as follows: (Berman d, 1999)

· Maximize throughput. (Throughput is the number of jobs processed per unit of time.)

· Maximize utilization. (Utilization is the percentage of time a resource is busy)

· Minimize flow time. (Flow time or session time is the sum of completion time of all jobs.)

A service-provider centric scheduler does not try to obtain detailed information about the characteristics of the application and it tries to optimally use the computing power of the grid. Condor (Wright, 2001) is an example of a service-provider centric scheduler.

3.2.3. Economy based scheduler

A third case of scheduling is called Economy-based. The scheduler mimics the market place where the user’s application is to execute at a particular total maximum cost or it is required to meet certain deadlines. The user is interested in satisfying the requirements of the application at the minimum possible cost. The goal of the service-provider is to obtain the highest price for its services. Thus each resource is characterized by its cost and its computational capacity characteristics. The scheduler tries to provide the service to the user at the lowest cost while providing maximum returns to the service provider. Nimrod-G (Buyya g, 2000) is a scheduling system based on such market-like considerations.

3.3. Other characterizing features:

Each of the class of schedulers described in Section 3.1 and 3.2 may have some of the following characteristics also.

3.3.1. Online vs. Batch Schedulers

Online schedulers allocate a node to an application as soon as the application is received. A Batch scheduler puts the received applications in a queue. At regular scheduling events, it allocates the applications to nodes, by following its scheduling policy. The overhead of online scheduler is much higher than the overhead of batch schedulers. Most of the practical schedulers are batch schedulers.

3.3.2. Preemptive / Non-preemptive based schedulers

Preemptive schedulers allow a job, which is being processed at one node to be rescheduled to a different node. However rescheduling adds a great deal of overhead, since the entire state of a partially processed task has to be transferred. Most of the practical schedulers are non-preemptive type.

4. Information Retrieval for Grid Schedulers

A number of grid scheduling systems have been developed. Each of them is based upon a particular vision of the grid, with different assumptions and constraints. Each has its own goals and therefore each has been used in some specific grid application.

The Global Grid Forum has been able to develop generalized definitions and requirements for the various components of the grid including the scheduler.

The schedulers require information about the availability of resources. There are a number of research projects, which aim at gathering the information and at making it available to the schedulers.

4.1. Resource Information retrieval

A grid has two major types of resources:

· Compute resource

· Communication resource

A resource information retrieval system may provide information either about only the compute resources or about both the types of resources. Such a system may be a centralized system or a distributed system. In this section one example each of the two types is described.

4.2. Meta computing Directory Service (MDS)

(Foster I, 1997) defines MDS as “Metacomputing Directory Service that provides efficient and scalable access to diverse, dynamic, and distributed information about resource structure and state”. It is a protocol for publishing information of grid resources. MDS is a part of the Globus toolkit. The resource information is stored in a collection of LDAP servers. For each computing station, the information includes the following:

· Operating system

· Processor type and speed

· Number of processors

· Available memory size

· Dynamic information like load, process information etc.

Each resource has associated with it a Grid Resource Information Service (GRIS). GRIS monitors the resource and stores current information about the status of the resource. Grid Index Information Service (GIIS) provides an aggregate directory of lower level data received from (GRIS) of each resource. Thus GIIS provides information about multiple GRIS systems. (GIIS) can be queried for information about resources. (GIIS) caches information from (GRIS) with long update frequency.

A hierarchical structure of GIIS can be built so that higher-level GIIS will contain information from a number of GIIS units at a lower level. Globus Grid Security Infrastructure (GSI) can be integrated with the querying system. (Zhang b, 2003)

[image: image10.png]GRIS register with GIIS

GIIS requests info
from GRIS services

N, Client 2 uses GIIS for
searching collective
_information

Client 1 searches
the GRIS directly

Figure 4-1: The MDS 2 Architecture. This architecture is flexible: There can be several levels of GIISs, and any GRIS or GIIS can register with another, making this approach modular and extensible. (Zhang b, 2003, page: 2)
To index the contents of a GRIS, GIIS can find a GRIS by using one of the following options:

(i) A GIIS may be configured with the associated GRIS hostnames.

(ii) A GRIS may register with a GIIS during start up

(iii) A referral service to link together multiple GRIS and/or GIIS servers into a single LDAP namespace can be created. The referral service contains no information about the resources. But it points towards GIIS and GRIS, from where the information can be collected. GIIS may find a GRIS by using the referral service.

A user can query a GIIS or can directly collect the information from a GRIS. MDS provides current information about the computing resources only. The advantages of using a standard LDAP interface is that the information can be collected directly from the computing hosts or from SNMP based systems or databases like Oracle. A user can find a GIIS by using DNS server records or from a referral tree or from other GIISs.

4.3. Network Weather Service (NWS)

NWS monitors the deliverable performance available from a distributed resource set. Based on the collected data through sensors, it forecasts the future performance levels using statistical forecasting models. It is adaptive in that if it is queried about a resource set repeatedly, it selects the forecasting model, which is able to provide the best prediction.

4.3.1. Architecture of a NWS Resource-set

For NWS, the resource set consists of computer machines and the network links connecting the machines. Sensors are mounted on each of the resources. The data from the sensors is collected. The forecasting subsystem creates forecasts by using each of the 17 statistical models. It is possible to add additional statistical models to the system by using an API.

[image: image11.png]Workstation 2| Ns: Name Server
S: Sensor

¥ PS: Persistent State
Workstation | \W i Forecaster

(@D

Workstation 3

Figure 4-2: Network Weather Services. (Wolski b, 1999, page: 4)
The reporting interface responds to command-line commands generated by an NWS index node. The NWS index node provides an interface between the NWS system as shown in fig 4-2 and an MDS LDAP request.

4.3.1.1. NWS Performance Sensors

NWS supports CPU sensor, Real memory sensor and TCP/IP bandwidth and latency sensor (Wolski b, 1999). The CPU sensor and the Real memory sensor monitor all active processes to determine available CPU resources and the available memory. The bandwidth and latency are measured by using Receive-side end-to-tend measurement algorithms. It is possible to extend NWS by adding new sensors. Each sensor produces a time series of measurements.

Performance Comparison:

GRIS can provide both static and dynamic information about the current status of the computing machines only. NWS is able to predict the performance at a time when the resource is expected to be used. NWS is able to provide information both about the computing machines as well as about the network.

However a grid scheduler requires a prediction about the resource status not only at a specific point of time, but for a duration of time, over which the resource is to be used by the application on the grid. Such systems have not yet become available for general use on the grid.

Both NWS generated information and the information from GRIS can be aggregated by an MDS by using LDAP.

Resource information retrieval systems can be compared on the following basis:

· Does the system provide only the current status or whether it can predict the future state of the resource also? If it predicts the status of the resources in the future, does it make the prediction for a fixed point of time in the future or for duration of time in the future?

· Does it provide information about both the computer machines and the network?

· Ease of use

· Scalability

· Speed of providing information

5. Existing Grid Schedulers

Many of the available grid schedulers are centralized. They assume that the jobs are received at a central point and the scheduling process is controlled by the scheduler, which has complete information about all the machines. Condor, Nimrod and GrADS are examples of the centralized schedulers.

5.1. Condor

The Condor High Throughput Computing System is a combination of dedicated and opportunistic scheduling. “Opportunistic scheduling involves placing jobs on non-dedicated resources under the assumption that the resources might not be available for the entire duration of the jobs” (Wright, 2001).

[image: image12.png]Wachin

Figure 5-1: Architecture of a condor pool with no jobs running.

(Wright, 2001, page: 4)
As shown in Figure 5.1, the architecture of Condor uses a daemon called the collector, for centrally maintaining the list of Condor resources. Periodically updates are sent to the collector by Condor daemons on computing machines. The collector runs on the machine called the Central Manager. The Central Manager consists of negotiator, which tries to find a match between resource requests, and resource offers (Wright, 2001). Each computational resource within the pool is represented by a demon called startd. Another demon called Schedd, handles the user jobs. All the jobs are submitted to Schedd. The main functionality of Schedd is to maintain a job queue, to publish resource request and to negotiate for available resources.
Condor, assumed that jobs, to be processed by a grid, would be independent and non-real time jobs. Resources are assumed to be independent workstations. The information about the computing resources only specifies the availability of the resource. When it is used for grid processing, the resource is not to be used for processing local jobs. Thus it is not time-shared. However as soon as a local job is loaded on a resource, the job brought through the grid will be pre-empted that is it would be moved to another resource available in the pool.

Check pointing is used for storing the state of the processing so that, if required, the job may be moved. Condor does not take into account the overhead of transferring a job.

Condor scheduling is designed to increase the utilization of workstations within a single domain (Wright, 2001).

5.2. Condor-G

Condor-G is a combination of Condor and Globus toolkit (Frey, 2002). The Globus toolkit supports resource discovery and resource access in multi-domain systems. Condor-G allows a user to harness multi-domain resources as if they all belong to a single domain. It also uses authentication, authorization and secure file transfer facilities provided by the Globus tool-kit.

[image: image13.png]Jcb Subrrission Machine | Job Execution Site

SitoJcb Schedulr

CordorG
Gidhrager

X i '

Figure 5-2: Remote execution by Condor-G on Globus- managed resources

(Frey, 2002, page: 4)
As shown in the Figure 5.2, Condor-G uses Globus GASS (Global Access to Secondary Storage) file server, G.S.I (Grid Security Infrastructure) and GRAM (Grid Resource Allocation and Management) protocol. The user accesses Condor-G scheduler from the user desktop. A local Grid-Manager daemon is created along with a GASS server. The Grid Manger gets authenticated with the Globus tool-kit at the job execution site. A Globus Job Manager daemon is created at the job-site. The Grid Manager and the Job Manager cooperatively get the job processed by using the available grid resources.

The Condor-G scheduler at the user’s desktop maintains a persistent job queue, so that failure of any part of the Grid would make available to the user the status of the job and state of the processed part up to the last checkpoint.

5.3. AppLeS Scheduler

AppLeS stands for Application Level Scheduler (Berman b, 2003). It has been designed for meeting performance goals, which may be specified by the application. Each application has its own scheduling agent. The agent monitors available resources and generates a schedule for the application.

AppLeS is based on a client/server model. It is also designed for a single domain where resources are time-shared.

The resource discovery and prediction is implemented through NWS. The user has to specify the necessary information about the application as well as the performance goal that the scheduler may attempt.

A number of possible schedules are developed along with the expected performance index for each case. The schedule, which maximizes the performance goal, is selected and implemented. The scheduler adaptively learns from every cycle of implementation to refine its working.

[image: image14.png](6) Schedule

\+

l Adaptation
(1) Resource | f (2) Resource |] (3)Schedule | | (4) Schedule | | (5) Application
Discovery Selection Generation Selection Exccution

Figure 5-3: Steps in the AppLeS methodology (Berman b, 2003, page: 2)

5.4. Nimrod-G Resource Broker

Nimrod-G was developed at Monash University, Australia. Nimrod mimics the model of a market for a single domain (Buyya g, 2000). Nimrod-G has been obtained by redesigning Nimrod for operation with Globus tool kit as shown in figure 5-4.

[image: image15.png]Additional services used implicitly:
« GSl (authentication & authorization)
+ Nexus (communication)

Resource
locatiol

Resource
allocation

i .

GRAM
server

File access

Root node Gatekeeper node Computational node

Figure 5-4: Nimrod/G and Globus Components Interactions

(Rajkumar Buyya, 2000, page: 4)
The resource discovery and job allocation over a grid is implemented through the Globus tool-kit whereas Nimrod handles the market mechanism.

Each Nimrod application has a specified budget and a deadline, before which it should be completed. Each resource has a price, which must be paid if the resource is to be used. The scheduler is designed to complete the application within the deadline at the minimum cost. Similarly each resource tries to maximize the gain by providing its services. If the budget or the deadline should be exceeded, the user is informed about it. Every application in Nimrod-G has an associated Job Wrapper, which acts as a mediator between the resource and the application. It would also be used for sending the required information to the Resource Accounting system.

Nimrod-G is part of a framework called Grid Architecture for Computational Economy (GRACE). GRACE includes a global scheduler called a broker. The broker works with other components like bid-manager, directory-server, and Globus tool-kit to maximize the performance goals.

5.5. GrADS Scheduler

The Grid Application Development Software (GrADS) project aims at making it simple for users to use grid resources (Berman c, 2001). After the application has been prepared in the GrADS program preparation system, it is delivered to the Scheduler/Service Negotiator system. The scheduler is a part of the GrADS execution environment.

[image: image16.png]Reallime
Monitor

Grid
Runtime
System

Negotiator

Scheduler
Dynarmic

GrADS Performance Ot
Libraries Contract

GrADS Program GrADS Execution
Preparation System Environment

Figure 5-5: GrADS Program Preparation and Execution Architecture

(Berman c, 2001, page: 8)
When the object containing the job with a performance contract is delivered to the Scheduler/Service Negotiator, it will broker the allocation and scheduling of grid resources for the job. Thereafter the dynamic optimizer is activated to adapt the program to the available resources. It will also insert sensors for monitoring the status of the job.

The real time monitor verifies that the requirements of the performance contract are satisfied. In case there is a violation, the execution may be interrupted. Either the optimizer may adapt the program or new resources may be negotiated or both the steps be taken to ensure compliance with the performance contract. Thus the closed loop system of GrADS scheduler ensures Quality of Service (QoS).

5.6 The Legion Scheduler

The Legion scheduler is a part of the object-based grid middleware being developed at University of Virginia. “The Legion design encompasses ten basic objectives: site autonomy, support for heterogeneity, extensibility, ease-of-use, parallel processing to achieve performance, fault tolerance, scalability, security, multi-language support, and global naming” (Chapin, 1999).

The Legion scheduler is customized for each application and it aims at minimizing the turn-around time. Since a customized scheduler is used, Legion system can cater to a diverse set of jobs on heterogeneous resources.

The Legion system consists of objects, different instances of which interact with one another. Thus an application is an object. The scheduler will use instances of this object on different resources as shown in the figure 5.6.1.

[image: image17.png]Application
Scheduler
RM Services

Application

Scheduler

Applica

tion

Applica

RM Services

Scheduler

RM Services

Scheduler

RM Services

Resource Objects

Resource Obj

Resaurce Objes

Resaurce Objects

)

Figure 5-6-1: Choices in Resource Management Layering (Chapin, 1999, page: 5)

Legion has a centralized Resource State Information Base. It has computational resources and storage resources. It does not yet have network resources as a part of the database.

[image: image18.png]Monitor

Figure 5-6-2: Use of the Resource Management Infrastructure (Chapin, 1999, page: 7)

The customized scheduler, as shown in Figure 5.6.2, is a part of the application object. It interacts with the resource database to work out a schedule, which meets the performance goals of the application. The scheduler passes the schedule to the Legion Enactor. The Enactor makes the reservations and inter-acts with the scheduler, if any changes are required. Then the Enactor places the objects on the selected resources and monitors the status of the application. Legion system is designed to be secure and scalable.

5.7 TITAN

The TITAN architecture “employs a performance prediction system (PACE) and task distribution brokers to meet user-defined deadlines and improve resource usage efficiency” (Spooner, 2003).

Iterative heuristic algorithms are applied for performance prediction for job schedulers in Grid environments. Workload managers, Distribution Brokers and Globus Interoperability providers comprise the TITAN system's hierarchy, with Globus forming the highest level in the hierarchy. The lowest level consists of schedulers for managing physical resources as shown in the figure 5-7-1.

[image: image19.png]

Figure 5-7-1: The TITAN architecture (Spooner, 2003, page: 3)

The algorithms of Deadline Sort, Deadline Sort with Node Limitation and the Genetic Algorithm have been tested. The Genetic Algorithm approach is found to be less sensitive to the number of processing nodes and to minor changes in the characteristic of the resource. Moreover it can take into account a large number of parameters of the resource system. The genetic algorithm is able to converge fast to balance the three objectives of makespan, idle time and the QoS metric of deadline time. TITAN uses Performance Analysis and Characterization Environment (PACE) for the predictor and brokers to meet performance objectives of a scheduler.

6. Concluding Remarks

A global grid will consist of heterogeneous computational resources connected through high-speed network. It may also have many data repositories and code repositories. A scheduler system will be the interface between a user and the grid resources.

6.1. Performance Goals for a Scheduler for the Global Grid

For a global grid, a scheduler will have the characteristics of being hierarchical, batch-type and non-preemptive type.

The schedulers have been developed from the perspective of efficient resource usage (Condor and Condor-G) or from the perspective of applications (AppLeS, Legion scheduler, GrADS) or from the perspective of a grid as market (Nimrod). Since the Globus tool-kit is becoming pervasive, schedulers like Condor-G or Nimrod-G may find wider acceptance. Most probably on a worldwide grid, an economy-based scheduler turns out to be the final choice.

An open worldwide market in grid may lead to a user having a choice of being able to use resources from a number of resource providers. Hence the scheduling process is likely to be governed by the perspective of the user. In general a user may be interested in a short turn-around time. Or the user may be interested in having the processing completed within a specified deadline and cost. Such schedulers have not yet been built.

6.2. Architecture of a Scheduler for the Global Grid
In the survey a number of schedulers have been described. The architecture of each of the schedulers has also been described. But the architecture of a Global Grid scheduling system is not yet available in the published literature. But the ideas for such a system in a conceptual form can be garnered from a study of the Survey. A user will be able to approach a number of Resource Providers for processing application. The scheduling agent of the user application will negotiate with a service provider on the basis of the deadline and the cost. Once the User’s Agent and the Resource provider’s scheduling agent agree, the processing for the application would begin. It is possible that user’s agent may do the transaction through a Broker rather than dealing with the Resource Provider directly. An effective accounting system and many components of such a scheduler are a subject of continuing research.

Appendix – I

Bibliography

	[1]. (Abawajy a, 2003)
	J. H. Abawajy, S.P. Dandamudi. Parallel Job Scheduling on Multi-Cluster Computing Systems. Proceedings of IEEE International Conference on Cluster Computing (Cluster 2003), pp.11-18, 2003.

Keywords: Cluster computing, Grid computing, dynamic-scheduling policy, space-sharing policy, time-sharing policy, load-redistribution, hybrid-policies, adaptive hierarchical Scheduling, job queue.

	[2]. (Abawajy b, 2003)
	J. H. Abawajy, S.P. Dandamudi. Scheduling Parallel Jobs with CPU and I/O Resource Requirements in Cluster Computing Systems. In Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems (MASCOTS'03), IEEE Computer Society Press, pp.336-343, 2003.

Keywords: Cluster computing, Parallel Job Scheduling, Parallel I/O, Coordinated CPU-I/O Resources Scheduling, High-Performance Computing.

	[3]. (Abawajy c, 2002)
	J. H. Abawajy, "Job Scheduling Policy for High Throughput Computing Environments," In Proceedings of the 9th IEEE International Conference on Parallel and Distributed Systems (ICPADS2002), pp.605-610, 2002.
Keywords: Job Scheduling, Cluster Computing, Opportunistic Job Scheduling, High Throughput Computing, Performance Analysis, Condor.

	[4]. (Abawajy d, 2003)
	J. H. Abawajy. An integrated resource scheduling approach on cluster computing systems. In the Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS 2003), pp. 251- 256, 2003.

Keywords: Cluster computing, Job Scheduling, Parallel I/O, Resource Scheduling, High-Throughput Computing, High-Performance Computing.

	[5]. (Abawajy e, 2003)
	J. H. Abawajy. Performance analysis of parallel I/O scheduling approaches on cluster computing systems. In the Proceedings of 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003), pp.724- 729, 2003.

Keywords: I/O Scheduling, Equi-Partition Policy, Performance Analysis, Lowest Destination Degree First, Highest Destination Degree First, Random policies.

	[6]. (Abramson, 2000)
	D. Abramson, J. Giddy, et al. High Performance Parametric Modeling with Nimrod/G: Killer Application for the Global Grid? In Proceedings of the 14th International Conference on Parallel and Distributed Processing Symposium (IPDPS-00), pp.520–528, Los Alamitos, 2000. IEEE.

Keywords: Parametric Modeling, Computational Grids, Global Grids, Computational Grid, heterogeneous computing, scheduling.

	[7]. (Agarwal, 2004)
	P. Agarwal, Rashmi Bajaj. Improving Scheduling of Tasks in a Heterogeneous Environment. IEEE Transactions on parallel and Distributed systems, v.15 n.2, pp.107-118, 2004.

Keywords: Communication cost, computational cost, directed acyclic graph, heterogeneous environment, network of processors, optimal scheduling, task duplication.

	[8]. (Allen, 2001)
	G. Allen, T. Dramlitsch, et al. Supporting efficient execution in heterogeneous distributed computing environments with Cactus and Globus. In Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, pp. 52–76, Colorado, 2001.

Keywords: Grid resources, Computational Grids, Communication Schedulers, Cactus-G, Globus.

	[9]. (Alhusaini, 1999)
	A.H. Alhusaini, V.K.Prasanna, et al. A unified resource scheduling framework for heterogeneous computing environments. In 8th Heterogeneous Computing Workshop (HCW’99), pp.156-165, 1999.

Keywords: Metacomputing Systems, Quality of service, Resource Scheduling algorithms, AppLes, Unified scheduling.

	[10]. (Berman a, 2003)
	Francine Berman, Walfredo Cirne. When the Herd Is Smart: Aggregate Behavior in the Selection of Job Request. In IEEE Transactions On Parallel and Distributed Systems, v.14, pp.181-192, 2003.

Keywords: Parallel supercomputers, space-shared supercomputers, job scheduling, application scheduling, aggregate behavior.

	[11]. (Berman b, 2003)
	Francine Berman, Richard Wolski, Henri Casanova, et al. Adaptive Computing on the Grid Using AppLes. In IEEE Transactions On Parallel and Distributed Systems, v.14, pp.369-382, 2003.

Keywords: Scheduling, parallel and distributed computing, heterogeneous computing, grid computing.

	[12]. (Berman c, 2001)
	Francine Berman, Andrew Chien, Keith Cooper, et al. The GrADS Project: Software support for high-level Grid application development. The International Journal of High Performance Computing Applications, v.15 n.4, pp.327–344, 2001.

Keywords: Distributed, dynamic, heterogeneous computing, performance monitoring.

	[13]. (Berman d, 1999)
	Francine Berman. High-performance schedulers. In Ian Foster and Carl Kesselman, editors, The Grid: Blueprint for a New Computing Infrastructure, pp.279–309, Morgan Kaufmann, San Francisco, CA, 1999.

Keywords: Scheduling, high-performance application schedulers, computational grids, performance measure, scheduling policy, performance model.

	[14]. (Berman e, 1996)
	Francine Berman, Richard Wolski, et al. Application Level Scheduling on Distributed Heterogeneous Networks. In Proceedings of Supercomputing 1996, pp.1-28, ACM press, 1996.
Keywords: Heterogeneous systems, application-management system, Prediction, Resource Selection, Scheduling, Memory Availability.

	[15]. (Berman f, 1996)
	F. Berman, R. Wolski. Scheduling From the Perspective of the Application. In proceedings of the Fifth IEEE Symposium on High performance Distributed Computing HPDC96, pp.100-111, 1996.

Keywords: Application Centric Scheduling, Metacomputing, Application Centric scheduling, Resource Selector, AppLes.

	[16]. (Blumofe, 1994)
	R. D. Blumofe, Park, D. S. Scheduling large-scale parallel computations on network of workstations. 3rd IEEE International Symposium on High-Performance Distributed Computing. pp. 96-105, 1994.

Keywords: Parallel supercomputers, idle-initiated scheduler, gang-scheduler, Macro-level scheduling, Micro-level scheduling, heterogeneous systems.

	[17]. (Braun, 1998)
	T.D. Braun, H.J. Siegel, et al. A Taxonomy for Describing Matching and Scheduling Heuristics for Mixed-machine Heterogeneous Computing Systems. IEEE symposium on Reliable Distributed Systems, pp.330-335, 1998.

Keywords: Taxonomy, Matching, Scheduling, subtask mapping, meta-task mapping, Heterogeneous Computing.

	[18]. (Bringmann, 1997)
	Oliver Bringmann, Wolfgang Rosenstiel. Resource sharing in hierarchical synthesis. Proceedings of the 1997 IEEE/ACM international conference on Computer-aided design, pp.318-325, 1997.

Keywords: Component Matching, Resource sharing, hierarchical schedule, sharing interval, Collision Set.

	[19]. (Burke a, 1999)
	E. K. Burke, A. J. Smith. A memetic algorithm to schedule planned maintenance for the national grid. Journal of Experimental Algorithmics (JEA), v.4, pp.1-13, 1999.

Keywords: Heuristics, memetic algorithms, tabu search, simulated annealing, hill climbing, Maintenance Scheduling.

	[20]. (Burke b, 1997)
	E. K. Burke, A. J. Smith. A memetic algorithm for the maintenance-scheduling problem. In Proceedings of the International Conference on Neural Information Processing and Intelligent Information Systems, v.1, pp.469–472. Springer, 1997.

Keywords: Memetic algorithm, Genetic Representation, Selection, Mutation, Neighbourhood Search, Local Search.

	[21]. (Buyya a, 2004)
	Rajkumar Buyya, Anthony Sulistio, et al. A Taxonomy of Computer-based Simulations and its Mapping to Parallel and Distributed Systems Simulation Tools. International Journal of Software: Practice and Experience, v.34 n.7, pp.653-673, Wiley Press, 2004
Keywords: taxonomy, simulation tools, parallel system, distributed system, scalability, Symmetric Multiprocessing (SMP) system, Massively Parallel Processing (MPP) system.

	[22]. (Buyya b, 2003)
	Rajkumar Buyya, Alexander Barmouta. GridBank: A Grid Accounting Services Architecture (GASA) for Distributed System Sharing and Integration. In International Parallel and Distributed Processing Symposium. IPDPS2003: IEEE Computer Society Press, pp.1- 8, 2003.

Keywords: Computational economy, Grid accounting, Grid Bank, Payment schemes, Grid Scheduling.

	[23]. (Buyya c, 2002)
	Rajkumar Buyya, Muthucumaru Maheswaran, et al. A taxonomy and survey of grid resource management systems for distributed computing. The Journal of Software Practice and Experience, v.32 n.2, pp.135–164, 2002.

Keywords: Metacomputing, Grids, Resource Management, Scheduling, and Internet Computing.

	[24]. (Buyya d, 2002)
	Rajkumar Buyya. Economic-based Distributed Resource Management and Scheduling for Grid Computing. Ph.D. Thesis, Monash University Australia, April 2002.

Keywords: Grid computing, heterogeneous resources, policies, application scheduling, quality-of-service, GRACE, GridSim, optimization strategies.

	[25]. (Buyya e, 2002)
	R Buyya, D Laforenza, et al. Grids and Grid Technologies for Wide-area Distributed Computing. The Journal of Concurrency and Computation: Practice and Experience, v.14, Issue 13-42, 2002.

Keywords: Grid Computing, middleware, resource management, scheduling, distributed applications.

	[26]. (Buyya f, 2000)
	R. Buyya, S. Chapin, D. DiNucci. Architectural Models for Resource Management in the Grid. The First IEEE/ACM International Workshop on Grid Computing (GRID 2000), Springer Verlag LNCS Series, 2000

Keywords: Grid Systems, resource scheduling, Hierarchical Model, Abstract Owner Model, Computational Market/Economy Model.

	[27]. (Buyya g, 2000)
	R. Buyya, D. Abramson, J. Giddy. Nimrod/G: An Architecture for a Resource Management and Scheduling System in a Global Computational Grid. Proceeding of the HPC ASIA’2000, the 4th International Conference on High Performance Computing in Asia- Pacific Region, Beijing, China, IEEE Computer Society Press, USA, 2000

Keywords: Computational Grids, System Architecture, Parametric Engine, Scheduler, Dispatcher, Job-Wrapper, Nimrod/G, Globus Toolkit, Resource allocation, Queuing System.

	[28]. (Buyya h, 2000)
	R. Buyya, D. Abramson, et al. An Evaluation of Economy-based Resource Trading and Scheduling on Computational Power Grids for Parameter Sweep Applications. Workshop on Active Middleware Services (AMS 2000), (in conjunction with Ninth IEEE International Symposium on High Performance Distributed Computing), Kluwer Academic Press, 2000, Pittsburgh, USA.

Keywords: Grid Computing, Computational middleware, Resource Trading, Nimrod/G Resource Broker, scheduling, Parameter Sweep Applications.

	[29]. (Buyya i, 2000)
	Rajkumar Buyya, Baikunth Nath, et al. Nature's Heuristics for Scheduling Jobs on Computational Grids. The 8th IEEE International Conference on Advanced Computing and Communications (ADCOM 2000), 2000, India.

Keywords: Grid Computing, Computational grid, grid computing, scheduling, resource management, global optimization algorithms, genetic algorithm, simulated annealing, tabu search, nature’s heuristics and hybrid algorithm.

	[30]. (Cao, 2002)
	Junwei Cao, Stephen A. Jarvis, et al. ARMS: An agent-based resource management system for grid computing. Scientific Programming, v.10 n.2, pp.135–148, 2002.

Keywords: Grid Computing, Performance Analysis, homogeneous agents, scheduling systems, scalability, adaptability, scheduling algorithms, PACE toolkit, resource management.

	[31]. (Casanova a, 2003)
	H. Casanova, H. Dail, F. Berman. A Decoupled Scheduling Approach for Grid Application Development Environments. Journal of Parallel and Distributed Computing (JPDC), Special issue on Grid Computing, v.63 n.5, pp.505-524, 2003.
Keywords: Grid Computing, Performance Analysis, homogeneous agents, scheduling systems, scalability, adaptability, scheduling algorithms, PACE toolkit, resource management.

	[32]. (Casanova b, 2002)
	H. Casanova. Distributed computing research issues in grid computing. SIGACT News, v.33 n.3, pp.50-70, 2002. ACM Press.

Keywords: Distributed Computing, Grid Computing, heterogeneous resources, High Performance Computing, Data Grid, Grid Information Service, application-level scheduler.

	[33]. (Casanova c, 2001)
	Henri Casanova. Simgrid: A Toolkit for the Simulation of Application Scheduling. In Proceedings of the First IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2001), pp. 430-437, 2001.

Keywords: Heterogeneous environment, Application scheduling, heuristics, random searches, scheduling algorithms, time-shared, topology, prediction, microgrid, simgrid.

	[34]. (Casanova d, 2001)
	Henri Casanova, Shava Smallen, Francine Berman. Applying scheduling and tuning to on-line parallel tomography. Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), pp.1-19, 2001.

Keywords: Application Level Scheduling, Application Tunability, Heterogeneous Computing, Computational Grid, Parallel Tomography, On-line Instruments.

	[35]. (Casanova e, 2000)
	H. Casanova, A. Legrand, D. Zagorodnov, et al. Heuristics for Scheduling Parameter Sweep Applications in Grid Environments. In Proceedings of the 9th Heterogeneous Computing Workshop (HCW'00), pp.349--363, 2000.
Keywords: Computational Grid, scheduling, heuristics, parameter sweep, Grid Model, scheduling algorithm, CPU load.

	[36]. (Casanova f, 1999)
	H. Casanova, M. Kim, J. Plank, J. Dongarra. Adaptive Scheduling for Task Farming with Grid Middleware. The International Journal of Supercomputer Applications and High Performance Computing (IJHPCA), v.13, pp.231-240, 1999.

Keywords: Farming, Master-Slave Parallelism, Scheduling, Metacomputing, Grid Computing.

	[37]. (Casavant, 1988)
	T.L. Casavant, J.G. Kuhl. A Taxonomy of Scheduling in General-Purpose Distributed Computing Systems. In IEEE Transaction on Software Engineering, v.14 n.2, pp.141-154, 1988.

Keywords: operating systems, scheduling, distributed computing, resource management, distributed scheduling, distributed processing, operating systems (computers), scheduling.

	[38]. (Chapin, 1999)
	S. J. Chapin, D. Katramatos, et al. The Legion Resource Management System. Proceedings of the Job Scheduling Strategies for Parallel Processing, pp.162-178, Springer-Verlag, 1999.

Keywords: parallel and distributed systems, task scheduling, resource management, autonomy.

	[39]. (Chen, 2002)
	Hongtu Chen, Muthucumaru Maheswaran. Distributed Dynamic Scheduling of Composite Tasks on Grid Computing Systems. International Parallel and Distributed Processing Symposium, pp.1-10, 2002.

Keywords: Wide-area network, dynamic scheduling, scheduling algorithms, local queuing policies, task allocation, scalability, flexibility, adaptability, resource management systems.

	[40]. (Coddington, 2003)
	Paul D. Coddington, Lici Lu, et al. Extensible job managers for grid computing. Proceedings of the twenty-sixth Australasian computer science conference on Conference in research and practice in information technology. v.16, pp.151-159, 2003. Australian Computer Society, Inc.

Keywords: Grid computing, cluster management systems, GLOBUS toolkit, PAGIS, job-manager, Java Applications.

	[41]. (Compasano, 1990)
	Raul Compasano, Reinaldo A. Bergamaschi. Synthesis using path-based scheduling: algorithms and exercises. Conference proceedings on 27th ACM/IEEE design automation conference, pp.450-455, 1990.

Keywords: Scheduling algorithms, high-level synthesis, pipelined architecture, control-flow graph, Heuristics.

	[42]. (Czajkowski a, 2001)
	K. Czajkowski, S. Fitzgerald, I. Foster, C.Kesselman. Grid Information Services for Distributed Resource Sharing. Proc. of the Tenth IEEE International Symposium on High-Performance Distributed Computing (HPDC-10), IEEE Press, pp.1-4, 2001.

Keywords: Grid systems, architecture, virtual organization, superscheduler, grid information protocol, distributed systems.

	[43]. (Czajkowski b, 1997)
	K. Czajkowski, I. Foster, et al. A resource management architecture for metacomputing systems. The 4th Workshop on Job Scheduling Strategies for Parallel Processing, pp.62–82, Springer-Verlag LNCS, 1997.

Keywords: Metacomputing systems, resource management, site autonomy, co-allocation, heterogeneous substrate, policy extensibility, online control.

	[44]. (Dail, 2000)
	Holly Dail, Graziano Obertelli, et al. Application-Aware Scheduling of a Magnetohydrodynamics Application in the Legion Metasystem. Proceedings of the 9th Heterogeneous Computing Workshop, IEEE Computer Society, pp.216-228, 2000.
Keywords: application scheduling, computational grid, dynamic scheduling, Legion, high-performance computing, distributed computing.

	[45]. (Dogan, 2002)
	A. Dogan, F. Özgüner. Scheduling Independent Tasks with QoS requirements in Grid Computing with Time-Varying Resource Prices. Proc of Third International Workshop on Grid Computing –GRID 2002, Baltimore, MD, USA, LNCS 2536, pp. 58-69, 2002, Springer-Verlag.

Keywords: Grid Computing, Computational Grids, resource management, scheduling, QoS-based scheduling, GLOBUS, heuristics.

	[46]. (Dongarra a, 2002)
	J. Dongarra, A. Yarkhan. Experiments with Scheduling Using Simulated Annealing in a Grid Environment. In M. Parashar, editor, Lecture notes in computer science 2536 Grid Computing – GRID 2002, volume Third International Workshop, pp.232-242, Baltimore, MD, USA, November 2002. Springer Verlag.

Keywords: Grid infrastructure, multiprocessor scheduling, performance model, Greedy methods, Annealing Scheduler.

	[47]. (Dongarra b, 2002)
	J. Dongarra, Sathish S. Vadhiyar. A Metascheduler For The Grid. Proceedings of the 11 th IEEE International Symposium on High Performance Distributed Computing HPDC-11 20002 (HPDC'02), pp.343-351, 2002
Keywords: heterogeneous, network of workstations, grid environment, load sharing facility, metascheduling.

	[48]. (Dongarra c, 2001)
	J. Dongarra, M. Shimasaki, B. Tourancheau. Clusters and computational grids for scientific computing. Parallel Computing, v. 27, Issue: 11, pp. 1401-1402, 2001

	[49]. (Ekmeci’c, 1996)
	I. Ekmeci'c, I. Tartalja, et al. A survey of heterogeneous computing: Concepts and systems. Proceedings of the IEEE, v.84 n.8, pp.1127-1144, 1996.
Keywords: Heterogeneous computing, taxonomy, topologies, graphs, resource allocation, parallelism, algorithms, probabilistic heuristic allocation, homogeneous systems, Queuing Theory, Load Balancing.

	[50]. (Feitelson a, 1998)
	D.G. Feitelson, L. Rudolph. Metrics and Benchmarking for Parallel Job Scheduling. In D.G. Feitelson and L. Rudolph, editor, Proc. of 4th Workshop on Job Scheduling Strategies for Parallel Processing, v.1459, pp. 1–24. Springer Verlag, 1998.

Keywords: Metrics, Benchmarking, Job Scheduling, queuing, dynamic partitioning.

	[51]. (Feitelson b, 1997)
	D.G. Feitelson, L. Rudolph. Theory and Practice in Parallel Job Scheduling. In D.G. Feitelson and L. Rudolph, editor, Proc. of 3rd Workshop on Job Scheduling Strategies for Parallel Processing, volume 1291 of Lecture Notes in Computer Science, pp.1–34, Springer Verlag, 1997.

Keywords: distributed computing, algorithmic methods, scheduling, workload distribution, distributed memory, gang scheduling, resource manager.

	[52]. (Foster a, 2003)
	I.Foster, L.Yang, et al. Conservative Scheduling: Using Predicted Variance to Improve Scheduling Decisions in Dynamic Environments. Proceedings of the ACM/IEEE Supercomputing 2003, pp.31-46, 2003

Keywords: Heterogeneous environment, conservative scheduling, CPU load, load prediction, stochastic scheduling policy, scheduling experiments.

	[53]. (Foster b, 2002)
	I. Foster, C. Kesselman, J. Nick, S. Tuecke. Grid Services for Distributed System Integration. Journal of Computer, v.35 n.6, pp.35-46, IEEE Computer Society Press, 2002

Keywords: Open Grid Service Architecture, distributed, heterogeneous, dynamic, resource sharing, service-provider.

	[54]. (Foster c, 2002)
	I. Foster, C. Kesselman, J. Nick, S. Tuecke. The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration. Open Grid Service Infrastructure WG, Global Grid Forum, pp.1-31, 2002.

Keywords: Grid computing, Grid services, homogeneous, resource management, GLOBUS toolkit, SOAP, WSDL, Web Services.

	[55]. (Foster d, 2002)
	I. Foster. The Grid: A New Infrastructure for 21st Century Science. Physics Today, v.55 n.2, pp.42-48, 2002

Keywords: Grid architecture, Cluster computing, Data Grids, Globus toolkit, authorization, authentication, monitoring, policies.

	[56]. (Foster e, 2002)
	I. Foster, A. Iamnitchi. Decoupling Computation and Data Scheduling in Distributed Data-Intensive Applications. In Proceedings of the 11th IEEE International Symposium on High Performance Distributed Computing (HPDC-11), pp.1-7, 2002.

Keywords: Data-Grids, scheduling algorithms, data-intensive applications, Local scheduler, Dataset scheduler, Replication, resource allocation.

	[57]. (Foster f, 2001)
	Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid - Enabling Scalable Virtual Organizations. Proceeding of First IEEE/ACM International Symposium on Cluster Computing and the Grid, pp.6 -31, 2001

Keywords: virtual organization, grid architecture, intergrid protocols, resource sharing, distributed computing, co- scheduling.

	[58]. (Foster g, 2001)
	I. Foster. The globus toolkit for grid computing. Proceeding of First IEEE/ACM International Symposium on Cluster Computing and the Grid, 2001.

	[59]. (Foster h, 2001)
	Foster, G. Lanfermann, et al. The Cactus Worm: Experiments with dynamic resource discovery and allocation in a Grid environment. International Journal of High Performance Computing Applications, v.15 n.4, 2001.

Keywords: Grid environment, Cactus, dynamic, heterogeneous, grid resource selection, scheduling, migration mechanisms, CONDOR, Globus toolkit.

	[60]. (Foster I, 1999)
	Foster, C. Kesselman, et al. A. A Distributed Resource Management Architecture that Supports Advance Reservations and Co-Allocation. International Workshop on Quality of Service, 1999.

Keywords: Dynamic discovery, heterogeneous computing, resource allocation, co-allocation agents, Quality of Service, LDAP, schedulers, heuristics.

	[61]. (Foster j, 1998)
	Foster, C. Kesselman, et al. Computational Grids, The Grid: Blueprint for a New Computing Infrastructure, Morgan-Kaufman, San Fransisco, 1998.

	[62]. (Foster k, 1997)
	Foster, C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. International Journal of Supercomputer Applications, v.11 n.2, pp.115-128, 1997.

Keywords: metacomputing environment, communication, authentication, data access, resource services, heterogeneity, security, scheduling, GLOBUS.

	[63]. (Foster l, 1997)
	S. Fitzgerald, I. Foster, et al. A directory service for configuring high-performance distributed computations. In Sixth IEEE Symposium On High Performance Distributed Computing, pp. 365-375, 1997.

Keywords: distributed systems, Scalability, Uniformity, Expressiveness, Extensibility, Security, Deployability, Dynamic data, metacomputing directory service.

	[64]. (Frey, 2002)
	James Frey, Todd Tannenbaum, et al. Condor-G: A Computation Management Agent for Multi-Institutional Grids. Journal of Cluster Computing, v.5, pp.237-246, 2002.

Keywords: multi-domain resources, job management, resource selection, security, fault tolerance, Condor-G, Globus Toolkit, resource allocation, scheduling, resource discovery.

	[65]. (Furmento, 2001)
	Nathalie Furmento, Anthony Mayer, et al. Optimization of component-based applications within a grid environment. Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), pp.30-30, 2001, Denver, Colorado.

Keywords: Computational grids, intelligent scheduling, application mapper, data objects, dynamic optimization, grid information services, grid deployment services.

	[66]. (Goldenberg, 2003)
	Mark Goldenberg, Paul Lu, et al. TrellisDAG: A System for Structured DAG Scheduling. In Proc. of the 9th International Workshop on Job Scheduling Strategies for Parallel Processing, volume 2862 of Lecture Notes in Computer Science, pp.21–43. Springer, 2003.

Keywords: High-performance computing, pipelines, scheduling policy, queues, high-throughput, peer-to-peer systems, CONDOR, global scheduling, placeholder scheduling.

	[67]. (Gonzalez, 1997)
	M. J. Gonzalez. Deterministic Processor Scheduling. ACM Computing Surveys, v.9 n.3, pp.173-204, 1997.

Keywords: Deterministic scheduling, optimal schedules, multiprocessors, job-shop, flow-shop, graph structures, deadlines, resources, preemption, periodic jobs.

	[68]. (Hagerup, 1997)
	T. Hagerup. Allocating Independent Tasks to Parallel Processors: An Experimental Study. Journal of Parallel and Distributed Computing, v.47, pp.185–197, 1997.

Keywords: Parallel machines, Self-scheduling, system induced variance, coordination, Guided Self-Scheduling, Trapezoid Self-Scheduling, Complexity.

	[69]. (Hamscher, 2002)
	Volker Hamscher, Uwe Schwiegelshohn, et al. Evaluation of Job-Scheduling Strategies for Grid Computing. GRID 2000, pp.191-202, 2002.

Keywords: Computational grids, scheduling algorithms, scheduling policies, job-queue, Single-site scheduling, Multi-site scheduling, Global job scheduling, backfilling algorithms, homogeneous resources, metacomputing.

	[70]. (Hovestadt, 2003)
	Matthias Hovestadt, Odej Kao, et al. Scheduling in HPC Resource Management Systems: Queuing vs. Planning. In Proc. of the 9th International Workshop on Job Scheduling Strategies for Parallel Processing, volume 2862 of Lecture Notes in Computer Science, pp.1–20. Springer, 2003.

Keywords: resource management system, heterogeneous, co-allocation, Globus, queuing systems, planning systems, scheduling policies, requesting resources.

	[71]. (Jackson, 2001)
	D. Jackson, Q. Snell, et al. Core Algorithms of the Maui Scheduler. In D.G. Feitelson and L. Rudolph, editor, Proceedings of 7th Workshop on Job Scheduling Strategies for Parallel Processing, volume 2221 of Lecture Notes in Computer Science, pp. 87–103. Springer Verlag, 2001.

Keywords: Maui scheduling, job prioritization, backfill scheduling, quality of service (QoS), FIRSTFIT, BESTFIT, Job prioritization, priority algorithm, metascheduling.

	[72]. (Krallmann, 1999)
	J. Krallmann, U. Schwiegelshohn, et al. On the Design and Evaluation of Job Scheduling Algorithms. In Fifth Annual Workshop on Job Scheduling Strategies for Parallel Processing, IPPS’99, pp.17–42, Springer–Verlag, Lecture Notes in Computer Science LNCS 1659, 1999.

Keywords: Scheduling algorithms, scheduling policy, resource requests, objective function, backfilling, SMART algorithm, list scheduling, randomized workload.

	[73]. (Kruskal, 1984)
	C. Kruskal, A. Weiss. Allocating independent subtasks on parallel processors. IEEE Transactions on Software Engineering, 11, pp.1001-1016, 1984.

	[74]. (Kwok, 1999)
	Y. K. Kwok, I. Ahmad. Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors. ACM Computing Surveys, v.31 n. 4, pp. 406-471, 1999.

Keywords: Static Scheduling, Task Graphs, DAG, Multiprocessors, Parallel Processing, Software Tools, Automatic Parallelization.

	[75]. (Laur, 1998)
	Rainer Laur, et al. Resource constrained modulo scheduling with global resource sharing, Proceedings of the 11th international symposium on System synthesis, IEEE Computer Society, pp.60-65, 1998.

Keywords: Global Resource Sharing, Scheduling algorithms, Modulo Scheduling, authorization functions, real time systems.

	[76]. (Lee, 2000)
	Joseph C. Lee, Dian Rae Lopez, and William A. Royce. Task Allocation on a Network of Processors. In IEEE Transactions On Computers, v.49, pp.1339-1353, 2000.

Keywords: Scheduling Algorithms, parallel/distributed systems, approximation algorithms, optimization.

	[77]. (Li, 2000)
	Keqin Li, Yi Pan. Probabilistic Analysis of Scheduling Precedence Constrained Parallel Tasks on Multicomputers with Contiguous Processor Allocation. In IEEE Transactions On Computers, v.49, pp.1021-1030, 2000.

Keywords: Average-case performance ratio, binary system partitioning, contiguous processor allocation, largest-task-first, parallel task, precedence constraint, probabilistic analysis, task scheduling.

	[78]. (Litzkow, 1988)
	M.Litzkow, M.Livny. Condor -A Hunter of Idle Workstations. In Proc. of the 8th International Conference of Distributed Computing Systems, pp.104-111.University of Wisconsin, Madison, 1988.

Keywords: distributed systems, local workstations, scheduling systems, checkpointing, remote cycles, remote execution, CONDOR, CPU capacity.

	[79]. (Liu, 2000)
	X.Liu, H.J.Song, et.al. The MicroGrid: a Scientific Tool for Modeling Computational Grids. In Proceedings of SC’ 2000, Texas, pp.1-22, 2000.

Keywords: Computational Grids, Micro Grid, virtual Grid, Global Coordination, Information services, Virtualizing Time, Resource Simulation, Clusters, Benchmark, Globus, Legion.

	[80]. (Maheswaran a, 1999)
	M. Maheswaran, S. Ali, et al. Dynamic Matching and Scheduling of a Class of Independent Tasks onto Heterogeneous Computing Systems. In 8th Heterogeneous Computing Workshop (HCW’99), pp.30-45, 1999.

Keywords: Heterogeneous systems, dynamic matching, heuristics, mapping, meta-tasks, batch mode, scheduling, performance metrics, load balancing, queue, machine heterogeneity.

	[81]. (Maheswaran b, 1999)
	M. Maheswaran, Shoukat Ali, et al. Dynamic Mapping of a Class of Independent Tasks onto Heterogeneous Computing Systems. Journal of Parallel and Distributed Computing, v.59 n.2, pp.107-131, 1999.

Keywords: Heterogeneous systems, dynamic mapping, heuristics, scheduling, load balancing, batch mode mapping, independent tasks.

	[82]. (Min, 2002)
	Rui Min, Muthucumaru Maheswaran. Scheduling Co-Reservations with Priorities in Grid Computing Systems. Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid, pp.266-267, 2002.

Keywords: Grid Computing, Scheduling, Co-Reservations, Priorities, Quality of Service, Globus Architecture, scheduling algorithms, simulations.

	[83]. (Neary, 2002)
	Michael O. Neary, Peter Cappello. Advanced eager scheduling for Java-based adaptively parallel computing. Proceedings of the 2002 joint ACM-ISCOPE conference on Java Grande, pp.56-65, 2002. ACM Press.

Keywords: Branch-and-bound, eager scheduling, fault tolerance, Grid computing, parallel computing, dynamic depth expansion, scalability.

	[84]. (Ramamoorthi, 1997)
	R. Ramamoorthi, A. Rifkin, et al. A general resource reservation framework for scientific computing. In Scientific Computing in Object-Oriented Parallel Environments, pp. 283-290. Springer-Verlag, 1997.

Keywords: Metacomputer, Distributed resource allocation, distributed scheduling algorithms, resource managers, Central Scheduling, hierarchical infrastructure, reservation by attribute.

	[85]. (Raman, 1998)
	R. Raman, M. Livny, et al. Matchmaking: Distributed resource management for high throughput computing. 7th IEEE International Symposium on High Performance Distributed Computing, pp.28-31, 1998.

Keywords: high throughput, distributed resource management, matchmaking algorithms, scheduling, heterogeneity, opportunistic scheduling, authentication, CONDOR.

	[86]. (Rosenberg, 2002)
	Arnold L. Rosenberg. Optimal Schedules for Cycle-Stealing in a Network of Workstations with a Bag-of-Tasks Workload. In IEEE Transactions On Parallel and Distributed Systems, v.13, pp.179-191, 2002.

Keywords: Cycle stealing, bag-of-tasks workloads, heavy-tailed distributions, networks of workstations (NOWs), optimal scheduling, scheduling parallel computations.

	[87]. (Schwiegelshohn a, 2002)
	U. Schwiegelshohn, R. Yahyapour, et. al. On Advantages of Grid Computing for Parallel Job Scheduling. In Proceedings of the 2nd IEEE International Symposium on Cluster Computing and the Grid (CC-GRID 2002), pp. 39-46, 2002.
Keywords: Grid computing, scheduling algorithms, throughput, load balancing, job sharing, machine selection, multi-site computing, WAN networks.

	[88]. (Schwiegelshohn b, 2000)
	U. Schwiegelshohn, A. Streit, R. Yahyapour, et.al. Evaluation of job-scheduling strategies for grid computing. In Proceedings of 1st IEEE/ACM International Workshop on Grid Computing (Grid 2000), v.1971, pp.191–202, 2000.

Keywords: Grid computing, Job-Scheduling, Machine models, scheduling algorithms, Single-site scheduling, Multi-site scheduling, decentralized scheduling, backfilling algorithms.

	[89]. (Schwiegelshohn c, 1998)
	U. Schwiegelshohn, R. Yahyapour. Analysis of First-Come-First-Serve Parallel Job Scheduling. In Proceedings of the 9th SIAM Symposium on Discrete Algorithms, pp. 629–638, 1998.

Keywords: Parallel Job Scheduling, space sharing, FCFS algorithm, gang scheduling, SMP nodes, scheduling policy.

	[90]. (Smith, 1999)
	W. Smith, I. Foster, et al. Using Run-Time Predictions to Estimate Queue Wait Times and Improve Scheduler Performance. In D.G. Feitelson and L. Rudolph, editor, Proc. of 5th Workshop on Job Scheduling Strategies for Parallel Processing, v.1659 of Lecture Notes in Computer Science, pp. 202–219. Springer Verlag, 1999.
Keywords: High performance computing, backfill scheduling algorithms, scheduling algorithms, Run time prediction, predicting Queue, scheduler performance.

	[91]. (Song, 2000)
	Ha Yoon Song, Richard A. Meyer, et al. An empirical study of conservative scheduling. Proceedings of the fourteenth workshop on Parallel and distributed simulation, pp.165-172, 2000, Italy.

Keywords: Conservative scheduling, scheduling algorithms, conservative protocols, conservative overheads, bipartition queue, granularity.

	[92]. (Spencer, 2002)
	Matthew Spencer, Renato Ferreira, et al. Executing multiple pipelined data analysis operations in the grid. Proceedings of the 2002 ACM/IEEE conference on Supercomputing, IEEE Computer Society Press, pp.1-18, 2002.

Keywords: Grid computing, Data analysis, filters, pipelined algorithm, scheduling algorithms, dynamic environment.

	[93]. (Spooner a, 2003)
	D. P Spooner, SA Jarvis, et al. Local Grid Scheduling Techniques using Performance Prediction. IEE Proceedings - Computers and Digital Techniques, v.150 n.2, pp.87-96, 2003.

Keywords: Grid computing, scheduling architecture, dynamic, resource discovery, monitoring, performance prediction, task allocation, GA algorithms.

	[94]. (Streit, 2002)
	A. Streit. A Self-Tuning Job Scheduler Family with Dynamic Policy Switching. In Proc. of the 8th Workshop on Job Scheduling Strategies for Parallel Processing, volume 2537 of Lecture Notes in Computer Science, pp.1–23. Springer, 2002.

Keywords: resource management, gang-scheduling, dynamic policy, scheduling algorithms, self-tuning, workloads, backfilling schedulers, metrics.

	[95]. (Su a, 1999)
	Alan Su, Francine Berman, et al. Using AppLeS to Schedule Simple SARA on the Computational Grid. International Journal of High Performance Computing Applications, v.13 n.3, pp.253-262, 1999.

Keywords: Computational Grids, Application-Level Scheduler, resource selection, agents, dynamic, distributed data applications.

	[96]. (Simirni, 2002)

	Evgenia Smirni, Barry G. Lawson. Multiple-queue backfilling scheduling with priorities and reservations for parallel systems. SIGMETRICS Perform. Eval. Rev, v.29 n.4, pp.40-47, ACM Press, 2002.

Keywords: batch schedulers, computational grids, parallel systems, backfilling schedulers and performance analysis.

	[97]. (Subramani, 2002)
	V. Subramani, et al. Distributed Job Scheduling on Computational Grids using Multiple Simultaneous Requests. 11th IEEE International Symposium on High Performance Distributed Computing (HPDC-11), pp.359-368, 2002.

Keywords: Computational Grids, Job scheduling, multiple requests, Metascheduling schemes, Hierarchical scheme, performance, k-distributed model, Queue Model, performance evaluation, dual queue scheduling.

	[98]. (Takefusa, 1999)
	Takefusa, S. Matsuoka, et al. Overview of a Performance Evaluation System for Global Computing Scheduling Algorithms. In Proc. of 8th IEEE Int. Symposium. on High Performance Distributed Computing, pp.97–104, 1999.

Keywords: Global computing systems, scheduling schemes, scheduling algorithms, Brick scheduling, communication model, monitor.

	[99]. (Tse, 2003)
	K. W. Tse, W. K. Lam, et al. Reservation aware operating system for grid economy. SIGOPS Oper. Syst. Rev. v.37 n.3, pp.36-42, 2003, ACM Press.

Keywords: Grid Economy, Grid computing, resource reservation, scheduling, multi-agent system, quality of service, co-reservation, advance reservation system, GLOBUS.

	[100]. (Weissman a, 1999)
	Jon B. Weissman. Prophet: automated scheduling of SPMD programs in workstation networks. Concurrency: Practice and Experience, 11(6), pp.301–321, 1999.

Keywords: network computing, data parallel, automated scheduling, SPMD applications, resource sharing, dynamic schemes, load distribution, topology, heuristics, complexity.

	[101]. (Weissman b, 1998)
	J. Weissman, X. Zhao. Scheduling Parallel Applications in Distributed Networks. Journal of Cluster Computing, pp.109–118, 1998.

Keywords: Distributed Networks, parallel applications, run-time scheduling, SPMD applications, resource heterogeneity, wide-area scheduling, dynamic, data parallel, scheduling algorithms.

	[102]. (Wolski a, 2003)
	Rich Wolski. Experiences with predicting resource performance on-line in computational grid settings. ACM SIGMETRICS Perform. Eval. Rev. v.30 n.4, pp.41-49, 2003, ACM Press.

Keywords: Computational Grids, performance prediction, dynamic, resource allocation, scheduling, storage systems, Network weather forecast services.

	[103]. (Wolski b, 1999)
	R. Wolski, N. T. Spring, et al. The Network Weather Service: A distributed resource performance forecasting service for metacomputing. The Journal of Future Generation Computing Systems, pp.1-19, 1999.
Keywords: Metacomputing, performance prediction, Network weather forecast, network monitoring, network aware, distributed computing.

	[104]. (Wright, 2001)
	D Wright. Cheap Cycles from the Desktop to the Dedicated Cluster: Combining Opportunistic and Dedicated Scheduling with Condor. Proceeding of HPC Revolution 01, Illinois, 2001.

Keywords: Computational resources, scheduling algorithms, CONDOR, CPU cycles, dedicated resources, dedicated schedulers, Opportunistic scheduling, backfilling, resource reservations.

	[105]. (Yang, 2003)
	Kun Yang, Xin Guo, et al. Towards efficient resource on-demand in Grid Computing. SIGOPS Oper. Syst. Rev. v.37 n.2, pp.37-43, 2003. ACM Press.

Keywords: Grid Computing, Quality of Service (QoS), Resource on Demand (RoD), Efficiency, Active Networks (AN), Policy-based Management (PBM).

	[106]. (Zhang a, 2003)
	Yanyong Zhang, Hubertus Franke, et al. An Integrated Approach to Parallel Scheduling Using Gang-Scheduling, Backfilling, and Migration. In IEEE Transactions On Parallel and Distributed Systems, v. 14, pp.236-247, 2003.

Keywords: Parallel scheduling, Gang-scheduling, Backfilling, Migration, priority queue, Co-allocation, Performance metrics, scheduling matrix.

	[107]. (Zhang b, 2003)
	Xuehai Zhang, Jeffrey L. Freschl, et al. A performance Study of Monitoring and Information Services for Distributed Systems. In Proceedings of HPDC-12, pp 1-12, 2003.

Keywords: Distributed Systems, Monitoring, MDS2, Globus Toolkit, GMA, R-GMA, Hawkeye tool, Performance Metrics.

	[108]. (Zhao, 2004)
	Henan Zhao, Rizas Sakellarious. A Hybrid Heuristic for DAG Scheduling on Heterogeneous Systems. In Proceedings of Heterogeneous Computing Workshop (HCW)-13, IEEE Computer Society, pp.1-20, 2004.

Keywords: DAG Scheduling, hybrid heuristics, Independent tasks, optimization.

Appendix – II

Annotated Bibliography

	[1]. [12]

	Francine Berman, Andrew Chien, Keith Cooper, et al. The GrADS Project: Software support for high-level Grid application development. The International Journal of High Performance Computing Applications, v.15 n.4, pp.327–344, 2001.
This is major paper where the authors outline the vision and strategies for the Grid Application Development Software (GrADS) project. Two concepts of their approach are: (a) An application is a configurable object. (b) Performance contracts that specify the expected performance as a function of available resources. The system uses feedback to monitor and to adapt the application to the available resources. The architecture includes a Program Preparation System that grid-enables the application. The execution environment includes a Grid Resources Management Service to provide ability to reserve, allocate, configure and manage collections of resources that match an application's needs. A real-time monitor tracks the actual performance against the contract guarantees. A dynamic optimizer computes at load time, to tailor object program to the actual runtime environment. Two software test beds are also included as a part of GrADS such as Micro Grid and Macro Grid. The two test beds are used to provide both a configurable and a fixed environment for studying grid behavior. Micro grid uses clusters of workstations and software tools to develop a repeatable and observable test bed. The Macro grid integrates computational and network resources at the GrADS institutions for a more realistic test bed.

	[2].
	Francine Berman, Richard Wolski, Henri Casanova, et al. Adaptive Computing on the Grid Using AppLes. In IEEE Transactions On Parallel and Distributed Systems, v.14, pp.369-382, 2003.

Berman et al, 2003, describe Application Level Scheduling (AppLeS) project and its underlying adaptive scheduling approach. The major feature is to combine the benefits of both static partitioning and dynamic self-scheduling. Depending on computational power and predictive errors, the job can be partitioned and allocated to different resources. The major part of the work is partitioned statically, based on dependable performance of the resource set. The values of the dependable resource set are determined from the prediction of available resources and the estimate of error in the prediction by Network Weather Service. The remaining work is dynamically self-scheduled depending on the actual completion of preceding work segments/tasks. AppLeS tuning performance was 2.5 times better than hand-tuned scheduling for the example application analyzed. For another application involving long running jobs and file sharing, the authors developed XSufferage heuristic to take into account data transfer costs and data reuse. System Model: The system assumes independent jobs, with no inter-dependencies. The resources constitute a heterogeneous set. The system architecture consists of a central server, which allocates jobs to agents.

	[3].
	Yanyong Zhang, Hubertus Franke, et al. An Integrated Approach to Parallel Scheduling Using Gang-Scheduling, Backfilling, and Migration. In IEEE Transactions On Parallel and Distributed Systems, v. 14, pp.236-247, 2003.

This paper focuses on the idea that traditional approaches for scheduling a job on a set of dedicated nodes can result in low system utilization and large wait times. The authors discuss three techniques that can be used beyond the traditional space sharing scheduling, namely: backfilling, gang scheduling, and migration. They analyze the effects of combining these techniques with respect to various performance criteria. They first look at the idea of conservative back filling for filling up the holes in scheduling by using smaller jobs out of order from the queue, and executing it. The condition is that such a job must complete before the scheduled start time of the next scheduled job. Their second approach is to use a technique known as gang scheduling. This is essentially the idea of time-sharing added to that of space sharing. They show that this is quite effective in reducing wait time, while increasing the apparent execution time. Their third approach is that of migration i.e. dynamically being able to move tasks of a parallel job. It can mitigate fragmentation in the schedule. It is important when collocation in space or time of tasks is necessary.

	[4].
	H. Casanova, H. Dail, F. Berman. A Decoupled Scheduling Approach for Grid Application Development Environments. Journal of Parallel and Distributed Computing (JPDC), Special issue on Grid Computing, v.63 n.5, pp.505-524, 2003.
This is a major paper, where the authors have developed a search methodology for selection of appropriate resources needed for an application and mapping of data and tasks to selected resources. The scheduler is decoupled from application-specific and platform specific components. The schedule returned by the scheduler consists of ordered list of machines and a mapping of data/tasks to those machines. The search procedure categorizes the machines into Candidate Machine Groups (CMG) based on connectivity and network latency. Instead of generating all possible combination of CMGs, the search procedure tries to match resource needs of an application in a hierarchical way, first matching for site locations (nearness), then matching for computation power and memory needs and then exhaustively searching for resources within the subset of CMGs. Resources availability information is obtained from multiple sources like NWS and MDS. The developed scheduling methodology was developed in collaboration with the Grid Application Development Software (GrADS) project team.

	[5].
	Matthias Hovestadt, Odej Kao, et al. Scheduling in HPC Resource Management Systems: Queuing vs. Planning. In Proc. of the 9th International Workshop on Job Scheduling Strategies for Parallel Processing, volume 2862 of Lecture Notes in Computer Science, pp.1-20. Springer, 2003.

Hovestadt et al, discuss differences between two different paradigms for Scheduling. In queuing systems, a job is placed in a queue, specifying different limits on the number of requested resources and duration. The requests in the queue are serviced, based on the scheduling policy. For example, the scheduling policy may indicate that the requests in the queue may be serviced in First In First Out (FIFO) order. Queue-based servicing of requests does not take into consideration the variations in load. Nor does it provide assured service standards. If there is extensive load on the nodes, a service request may have to wait a long time before it is taken up. In planning systems, the resource allocations are reserved in advance. Thus when a job needs to be executed, a planning system gathers information about the resource needs. Based on the availability of resources, the planning system reserves a service time for every job.

	[6].
	R. D. Blumofe, Park, D. S. Scheduling large-scale parallel computations on network of workstations. 3rd IEEE International Symposium on High-Performance Distributed Computing. pp. 96 -105, 1994.

Blumfofe, et al, describe how their Phish system implements the idle-initiated scheduler that they have developed. The Idle-initiated scheduler consists of a Macro-level scheduler and a Micro-level scheduler. The Macro-level scheduler determines which workstations in a network of workstations are idle so as to allocate parallel jobs to them, and a Micro-level Scheduler allocates tasks of a job to participating processors. Phish, named after a Band from Burlington, Vermont, is a software package for running parallel applications on a network of workstations. Each workstation needs to run a Phish JobManager Process. A Phish JobQ is maintained at server, which receives all the jobs. The JobManager communicates with the JobQ at most every 30 seconds to get a job. If the owner of the workstation is using it, the workstation is not available for the parallel jobs. The JobManager checks every 5 minutes to see if the processor is idle. If so, it approaches the JobQ to get a job allocation. The Clearinghouse keeps track of all the worker programs.

	[7].
	T.D. Braun, H.J. Siegel, et al. A Taxonomy for Describing Matching and Scheduling Heuristics for Mixed-machine Heterogeneous Computing Systems. IEEE symposium on Reliable Distributed Systems, pp.330-335, 1998.

This is a major paper in which the authors describe the Purdue Heterogeneous computing taxonomy. The taxonomy is based on characterization of three major components: (1) application model and communication based on characteristics, such as, size, type, communication patterns, data availability, deadlines, priorities and Quality of Service requirements. (2) Platform model based on characteristics, such as, analytical benchmarks, interconnection network, machine heterogeneity and task compatibility. (3) Mapping strategy using application model support, communication times, execution location, fault tolerance, static and dynamic mapping.

	[8].
	Rajkumar Buyya, Anthony Sulistio, et al. A Taxonomy of Computer-based Simulations and its Mapping to Parallel and Distributed Systems Simulation Tools. International Journal of Software: Practice and Experience, v.34 n.7, pp.653-673, Wiley Press, 2004
A Taxonomy for Computer Based Simulations, with a focus on Parallel and Distributed Systems, is outlined by Buyya et al. Parallel Distributed systems can be Parallel Systems, such as, Symmetric Multi Processor (SMP) or Massively Parallel processing (MPP) systems, or Distributed systems connected through internet, intranet, mobile or telephony systems. Simulation and emulation tools in the area of PDS are analyzed and mapped into the proposed taxonomy based on PDS, Usage, Simulations, and design. A number of open source simulation tools are listed and compared with one another.

	[9].
	Rajkumar Buyya, Alexander Barmouta. GridBank: A Grid Accounting Services Architecture (GASA) for Distributed System Sharing and Integration. In International Parallel and Distributed Processing Symposium. IPDPS2003: IEEE Computer Society Press, pp.1- 8, 2003.

Buyya and Barmouta, present a Grid Accounting Services Architecture (GASA) on the lines of banking principles, employing (a) pay before use, (b) pay as you go (c) pay after use policies. The paper outlines Grid Bank infrastructure to address grid usage accounting. Three major components of the architecture are the GridBank, GridServiceProvider and the GridService Consumer. The paper also focuses on the protocols for inter-action among the three entities and the format for Resources Usage Records. The records include user identification as well as grid resources usage, such as, host type, cpu time, and software services.

	[10].
	Rajkumar Buyya, Muthucumaru Maheswaran, et al. A taxonomy and survey of grid resource management systems for distributed computing. The Journal of Software Practice and Experience, v.32 n.2, pp.135–164, 2002.
Resources Management System (RMS) in a Grid provides resource discovery, dissemination and scheduling functions. A RMS interacts with the operating system, other subsystems of grid that provide for accounting/billing, security, as well as, grid tool kit based application programs. This taxonomy is focused on RMS, and does not cover application models or target platform models. The RMS attributes, such as, Machine Organization (flat, cells or hierarchical), resources model (schema or object), resource namespace organization (relational, hierarchical or graph), Quality of Support (soft, hard or none), resource discovery and dissemination (network directory, or distributed objects), scheduler organization (centralized, hierarchical, or decentralized), state estimation (predictive or non-predictive), and rescheduling (periodic, or event-driven) and scheduling policy (fixed or extensible) have also to be taken into consideration while classifying the resource management systems.

	[11].
	Rajkumar Buyya, Baikunth Nath, et al. Nature's Heuristics for Scheduling Jobs on Computational Grids. The 8th IEEE International Conference on Advanced Computing and Communications (ADCOM 2000), 2000, India.
Job scheduling in a grid environment is a NP-Complete problem and requires use of heuristics to search for near optimal solutions. The authors discuss analogy of genetic algorithms (GA) involving natural selection heuristics in reproduction, and simulated annealing (SA) of metals that achieve minimum-energy crystalline structure, in the context of job scheduling. They develop a hybrid approach to grid scheduling involving GA-SA that combines the benefits of parallelizability of GA and convergence of SA. The authors also employ Tabu Search to guide heuristics search to overcome local minima and local maxima.

	[12].
	D. Jackson, Q. Snell, et al. Core Algorithms of the Maui Scheduler. In D.G. Feitelson and L. Rudolph, editor, Proceedings of 7th Workshop on Job Scheduling Strategies for Parallel Processing, volume 2221 of Lecture Notes in Computer Science, pp. 87–103. Springer Verlag, 2001.

Maui Scheduler is a popular scheduler used in heterogeneous computing environments. The authors describe the algorithms used in Maui scheduler for backfill, job prioritization and fairshare, including configurability and parameterization. Based on job prioritization and job's estimated run time, reservations are made for the resources. Backfill then fills the gaps between reserved slots with smaller and short running jobs. The paper describes the algorithms and parameters used by Maui algorithms.

	[13].
	M.Litzkow, M.Livny. Condor -A Hunter of Idle Workstations. In Proc. of the 8th International Conference of Distributed Computing Systems, pp.104-111.University of Wisconsin, Madison, 1988.

This is a milestone paper in which the author’s describe Condor system that attempts to utilize idle capacity of workstations. A metric called "leverage" is introduced, and is defined as the ratio of capacity of a workstation consumed by job remotely to the capacity consumed on the home station to support remote execution. The Up-Down algorithm that they use attempts to provide steady access to heavy users while ensuring fair access to light users. The time a user waits for remote cycles is weighted in, and a user, who is receiving denial-of-access to the remote service for a long time, gets higher priority. This is implemented by maintaining a schedule-index.

	[14].
	Mark Goldenberg, Paul Lu, et al. TrellisDAG: A System for Structured DAG Scheduling. In Proc. of the 9th International Workshop on Job Scheduling Strategies for Parallel Processing, volume 2862 of Lecture Notes in Computer Science, pp.21–43. Springer, 2003.
TrellisDAG, described in Goldenberg et al, is a part of the Trellis project, which aims at creating a metacomputer. TrellisDAG is layered on top of the placeholder technique to take care of dependencies among jobs. It introduces the concept of placeholder scheduling, in which each placeholder represents a potential unit of work. The conceptual model is of a central server and a set of computational nodes. The server receives all the jobs. A set of programs, called services, forms a layer on both the server and the nodes. A Placeholder is placed on each of the nodes. SSH is used for communication across administrative domains. Each of the placeholders pulls the run-time parameters from the central server, instead of using a push from the central server. Unlike Condor, TrellisDAG execution hosts are loosely coupled and can be quickly deployed. Trellis allows modeling of hierarchical relationships amongst various jobs. Jobs are organized into groups, prolog groups and epilog groups. Prologue groups do not have subgroups. Epilogue groups are executed only after all other groups at the same level are executed. Jobs within a group are executed in the order of submission. A super group jobs are executed only after its sub groups are executed.

	[15].
	Henri Casanova. Simgrid: A Toolkit for the Simulation of Application Scheduling. In Proceedings of the First IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2001), pp. 430-437, 2001.

Casanova outlines the features of Simgrid, a simulation toolkit for studying scheduling algorithms for distributed systems. Simgrid uses event driven scheduling. Simgrid provides model and abstraction, rapid prototyping and evaluation of schedulers. Simgrid provides API's for defining resources, tasks and for simulating the grid computing to generate the results of simulation. Scheduling algorithms usually depend upon the prediction of execution time by the user. However these values may not be accurate. Simgrid can add statistically an error to the predicted duration of a task before starting the process of scheduling. Simgrid can simulate the grid application at higher speeds by taking a coarser time scale, if required. Experimental results show that Simgrid can rank the scheduling algorithms well, and reports reasonable accuracies.

	[16].
	Paul D. Coddington, Lici Lu, et al. Extensible job managers for grid computing. Proceedings of the twenty-sixth Australasian computer science conference on Conference in research and practice in information technology. v.16, pp.151-159, 2003. Australian Computer Society, Inc.

Coddington et al, describe the limitations of Globus Global Resource Allocation and Management (GRAM) and propose some extensions to enable staging of necessary files for executing a job, enabling submission of group of jobs together, passing run time parameters for encoding job execution environments needed to run a job (such as running a Java program within JVM) within GRAM.

	[17].
	K. Czajkowski, I. Foster, et al. Resource management architecture for metacomputing systems. The 4th Workshop on Job Scheduling Strategies for Parallel Processing, pp.62–82, Springer-Verlag LNCS, 1997.
Czajkowski et al, describe the architecture of Globus Resource Management System (RMS). Extensible Resource Specification Language (RSL) for a precise description of the resources is a part of the architecture. RSL is based on the syntax for filter specifications in the Light weight Directory Access Protocol. It is used for communication among the components of RMS. Globus Resource Allocation Manager (GRAM) manages the resources at the local level and interacts with the Co-allocator. Metacomputing Directory Service (MDS) provides information about availability and capability of resources. Applications contact the Broker for getting the application processed. They have to interact with the Information Service and the Co-allocator (for allocating resources at different sites simultaneously). Brokers may be associated with a group of resources. The Brokers may have to negotiate with other Brokers before the scheduling for an application can be done. A Gatekeeper, using the Globus Security Infrastructure for authentication, is a part of the architecture.

	[18].
	Junwei Cao, Stephen A. Jarvis, et al. ARMS: An agent-based resource management system for grid computing. Scientific Programming, v.10 n.2, pp.135–148, 2002.
Cao et al, describe an Agent based Resources Management System (ARMS) that uses a hierarchy of agents for the purpose. Each agent maintains Agent Capability Tables (ACTs) to record service information about other agents. When a request exhausts a search, but does not find a matching service, it will query an agent higher in the hierarchy or terminate the discovery process. Agents for the more powerful nodes in the grid will be higher in the hierarchy of agents. Thus, when a request's need for resources cannot be met by nodes lower in the agent hierarchy, the request propagates to higher agents.

	[19].
	D.G. Feitelson, L. Rudolph. Metrics and Benchmarking for Parallel Job Scheduling. In D.G. Feitelson and L. Rudolph, editor, Proc. of 4th Workshop on Job Scheduling Strategies for Parallel Processing, v.1459, pp. 1–24. Springer Verlag, 1998.
Feitelson and Rudolph propose some metrics for parallel job scheduling algorithms, and a standard workload to benchmark performance for a quantitative comparison. Workload description consists of two components: job arrival time (characteristics such as, time of day, day of week variations) and job structure (modeling based on equations describing job behavior or analytical methods to compute runtime from job structure). The proposed benchmark suite consists of a family of programs that depend on parameters that describe their granularity. The authors describe parameters for different types of workloads, such as, Rigid jobs (e.g. number of processors and execution time), Work pile (no internal job structure), Barriers (e.g., number of barriers) and Fork-join (e.g. sequence of parallel loops with different degrees of parallelism).

	[20].
	D.G. Feitelson, L. Rudolph. Theory and Practice in Parallel Job Scheduling. In D.G. Feitelson and L. Rudolph, editor, Proc. of 3rd Workshop on Job Scheduling Strategies for Parallel Processing, volume 1291 of Lecture Notes in Computer Science, pp.1–34, Springer Verlag, 1997.
This is a major paper were Feitelson et al, review the theory of parallel job scheduling and contrast with the practices. The author review different models for Partition specification (fixed, variable, adaptive and dynamic), job flexibility (rigid, moldable, evolving and malleable), level of preemption (none, local, migratable and gang scheduling), knowledge available to scheduler about the workload (none, workload, class and job) and memory (distributed and shared). The authors make recommendations to improve performance of schedulers. They then propose a PSCHED standard that aims at standardizing interactions among various components involved in scheduling parallel jobs, such as, message passing libraries, task managers, resource managers and schedulers. PSCHED APIs cater to two areas, one to spawn, control, monitor and signal tasks of jobs, and second, for a set of calls for batch job schedulers. PSCHED is visualized for a meta centre. A meta center is a computing resource, where jobs can be scheduled and run on a set of heterogeneous machines, physically distributed over a geographical area but connected through a network.

	[21].
	D. P Spooner, SA Jarvis, et al. Local Grid Scheduling Techniques using Performance Prediction. IEE Proceedings - Computers and Digital Techniques, v.150 n.2, pp.87-96, 2003.
Spooner et al have applied Iterative heuristic algorithms for performance prediction for job schedulers in Grid environments. Workload managers, Distribution Brokers and Globus Interoperability providers comprise the TITAN system's hierarchy, with Globus forming the highest level in the hierarchy. The lowest level consists of schedulers for managing physical resources. Three algorithms such as Deadline Sort, Deadline Sort with Node Limitation and Genetic Algorithm have been tested. The Genetic Algorithm approach is found to be less sensitive to the number of processing nodes and to minor changes in the characteristic of the resource. Moreover it can take into account a large number of parameters of the resource system. The genetic algorithm is able to converge fast to balance the three objectives of makespan, idle time and the QoS metric of deadline time. TITAN uses Performance Analysis and Characterization Environment (PACE) to predictor and brokers to meet performance objectives of a scheduler.

	[22].
	Rich Wolski. Experiences with predicting resource performance on-line in computational grid settings. ACM SIGMETRICS Perform. Eval. Rev. v.30 n.4, pp.41-49, 2003, ACM Press.
This is a major paper in which the author focuses on the grid computing environments, the computational resources as well as Network Weather Service (NWS) uses a mixture-of-experts approach for predicting performance characteristics of resources when a given job is to be executed. A set of forecasting models, each with its own parameters, is configured. Using performance history, a forecast is generated for each element of history, using all previous observations, by each model. The method of estimating performance using all previous observations is termed as "postcasting". Errors are computed by comparing the forecasts with performance history. A model that predicts most accurately is chosen for the required forecast. Every forecast is based upon the most recent measurements. The forecast will use the statistical method, which has given the least aggregate error up to the instant when the forecast is required. Thus NWS provides adaptive prediction for grid applications.

	[23].
	A.H. Alhusaini, V.K.Prasanna, et al. A unified resource-scheduling framework for heterogeneous computing environments. In 8th Heterogeneous Computing Workshop (HCW’99), pp.156-165, 1999.

A unified framework for resource scheduling is presented by Alhusaini et al (1999). This work is a part of the Management System for Heterogeneous Networks (MSHN) project. The model is of applications competing for resources such as compute cycles and memory of compute nodes, communication network and data repositories or file servers. The model assumes that no more than one sub-task can access a data repository at a time. Communication latencies and data transfer time per byte between nodes are pre-specified. The goal of the framework is to minimize the execution time of a group of jobs. Each Application is modeled as a Directed Acyclic Graph. A job consists of many sub-tasks. For each sub-task, the resource requirements are specified. The issues of bandwidth of the communication links, the selection of an appropriate repository - in case of replicated data repositories, and advance reservation of resources have been considered by the unified framework. Simulation has been done for 4 different scheduling algorithms, based on the unified approach and the Baseline algorithm, which uses scheduling for each application separately. The framework takes into account Quality of Service factors. But the algorithm to take into account QoS has not been reported in this paper. The simulation results show that scheduling through unified approach is significantly better than scheduling each type of resources separately.

	[24].
	P. Agarwal, Rashmi Bajaj. Improving Scheduling of Tasks in a Heterogeneous Environment. IEEE Transactions on parallel and Distributed systems, v.15 n.2, pp.107-118, 2004.

In this paper Bajaj and Agrawal (2001) have extended the Task duplication based approach for scheduling an application on a homogenous cluster to a network of heterogeneous systems (TANH). The scheduling algorithm attempts to schedule tasks to minimize makespan. The performance is compared with that of the Best Imaginary Level Scheduling (BIL). TANH has been tested exhaustively with four DAGS of 3000 nodes each. TANH algorithm is found to reduce the makespan substantially below the value obtained from using BIL. TANH, with the simplifying assumptions and in a homogeneous environment, has a polynomial complexity and can be scaled easily upwards.

	[25].
	J. H. Abawajy. An integrated resource scheduling approach on cluster computing systems. In the Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS 2003), pp. 251- 256, 2003.

Abawajy (2003) presents an Adaptive Distributed Scheduling (ADS) policy in a cluster-computing environment. The ADS policy combines the benefits of Local (executing a job on the site that originated it) and Affinity (executing a job on a site that has the required data files) policies. The ADS job scheduler initially sends a job to a site that has the data files. But if the site is busy, it forwards the request for Local execution. The performance metric also accounts for network latency and time for data transfer. Discrete event Simulations show that the ADS policy performs substantially better than either Local or Affinity policies.

	[26].
	J. H. Abawajy. Performance analysis of parallel I/O scheduling approaches on cluster computing systems. In the Proceedings of 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003), pp.724- 729, 2003.

I/O represents a growing fraction of application execution time, particularly in large clusters located at geographically larger distances. The system model consists of a central data scheduler with multiple sources of data. Every compute node of the cluster sends its I/O request to the central data scheduler. Abawajy, (2003b) presents two algorithms for the data scheduler: Equi-partition (EQUI) I/O policy and Adaptive Equipartition (AEQUI) I/O policy. Average load is computed based on outstanding requests and number of I/O servers. In Equipartitioning policy, it assigns a set of requests to a server that has the least number of outstanding requests, until its load equals the average load. Adaptive Equipartitioning algorithm is similar to Equipartitioning, but it also accounts for the backlog of jobs at a server, moving jobs from heavily loaded servers to lightly loaded ones.

	[27].
	J. H. Abawajy, S.P. Dandamudi. Scheduling Parallel Jobs with CPU and I/O Resource Requirements in Cluster Computing Systems. In Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems (MASCOTS'03), IEEE Computer Society Press, pp.336-343, 2003.

The authors proposed Adaptive Hierarchical Scheduling policy (AHS) for multi-cluster environments. Each cluster is geographically compact and contains a set of workstations. A hierarchy of schedulers is adopted with a system scheduler at the top of hierarchy, a cluster scheduler at cluster level, and local scheduler at the leaf level. Jobs are submitted to system scheduler and maintained in a queue until they are assigned to lower levels. When a scheduler at a lower level is ready to accept jobs, it updates its parent. This recursive messaging keeps system scheduler updated about available leafs (self scheduling). AHS performs Affinity scheduling, self-scheduling and job assignment. It takes into account co-scheduling of both the jobs and the I/O. AHS is reported to be substantially better than a policy of Static space sharing with time-sharing of processors only.

	[28].
	Francine Berman, Richard Wolski, et al. Application Level Scheduling on Distributed Heterogeneous Networks. In Proceedings of Supercomputing 1996, pp.1-28, ACM Press, 1996.

Berman and Wolski 1996, outline features of application centric scheduling in which systems are evaluated in terms of their impacts on the Application. They also describe AppLes scheduling agents. AppLes develop a customized scheduler for each application. The AppLes scheduling agent inter-acts with Resource Management Systems of grid tool-kits like Globus or Condor to meet the performance goals of the application. Resource information is obtained through NWS. Experiments prove that the AppLes approach, based on the prediction of the availability of resources is able to outperform the block-partitioning approach. The active Agent in AppLes is called the Coordinator. The 4 subsystems, with which the Agent works, are: The Resource Selector, The Planner for generating a schedule for the available resources, The Performance Estimator, for generating performance estimates for each of the schedules generated by the Planner and the actuator, which implements the best schedule.

	[29].
	Francine Berman. High-performance schedulers. In Ian Foster and Carl Kesselman, editors, The Grid: Blueprint for a New Computing Infrastructure, pp.279–309, Morgan Kaufmann, San Francisco, CA, 1999.
Berman (1999) discusses the characteristics of high performance schedulers and analyzes several published schedulers according to scheduling models (Scheduling policy and Program Model) they implement. The author also lists some of the challenges, such as, weighing Portability against Performance, scalability, efficiency, repeatability, multi-scheduling (co-existing with other schedulers) and grid aware programming. This is a survey of the challenges, the available solutions and the goals of the research in application-centric schedulers.

	[30].
	Francine Berman, Walfredo Cirne. When the Herd Is Smart: Aggregate Behavior in the Selection of Job Request. In IEEE Transactions On Parallel and Distributed Systems, v.14, pp.181-192, 2003.

The features of Super Computer AppLes (SA) scheduler is outlined in Cirne and Berman (2003). A moldable application gives to the SA all the information required for processing the job. The SA inter-acts with the scheduler of the super-computer and determines the kind of request that would result in the lowest value of turn-around time. Thus SA operates as a request selector out of the various possible requests that can be made for a moldable application. Then the SA makes that request to the scheduler of the supercomputer on behalf of the application. The paper studies the aggregate behavior when a large number of SAs are inter-acting with the same scheduler of a Super computer. Statistical analysis of four reference workload logs is used to understand the job moldability. The degradation in performance due to contention between multiple SA's is observed at low loads. But at medium and heavy loads, the wait times by applications reduce when many instances of SAs are present. This is because the schedulers of supercomputers would usually accept shorter jobs first. Multiple SAs therefore find that the queues for execution will have less “holes”, when there is a greater competition among a larger number of SAs.

	[31].
	R. Buyya, D. Abramson, et al. An Evaluation of Economy-based Resource Trading and Scheduling on Computational Power Grids for Parameter Sweep Applications. Workshop on Active Middleware Services (AMS 2000), (in conjunction with Ninth IEEE International Symposium on High Performance Distributed Computing), Kluwer Academic Press, 2000, Pittsburgh, USA.

Economy based resource trading and scheduling is evaluated in Buyya et al, (2000). The system uses resource broker Nimrod/G, which supports a simple declarative parametric modeling language for parametric experiments. It has been designed for working with middleware like Globus, Legion, Ninf and NetSolve. However every middleware does not have equal facilities for online trading. If Nimrod/G and system level infrastructure called GRACE (Grid Architecture for computational economy) are both used along with the middleware of choice, it is possible to have dynamic online trading. In this paper, a simulation of such a system for parameter sweep studies has been done for three scheduling algorithms, which provide (a) time minimization limited by budget, (b) cost minimization limited by deadline to complete, and (c) None minimization, limited by deadline and budget.

	[32].
	R. Buyya, D. Abramson, J. Giddy. Nimrod/G: An Architecture for a Resource Management and Scheduling System in a Global Computational Grid. Proceeding of the HPC ASIA’2000, the 4th International Conference on High Performance Computing in Asia- Pacific Region, Beijing, China, IEEE Computer Society Press, USA, 2000
Architecture of Nimrod/G, a grid enabled resources management and scheduling system, is described in Buyya et al, (2000). The system has user interface, a parametric engine (persistent job control agent), a scheduler, a dispatcher (that initiates job execution on a selected resource under the direction of scheduler, and a job-wrapper (for staging of tasks and data and sending the results back). Nimrod/G is designed to work with the Globus tool-kit. In particular, it can take the Resource discovery from the MDS of Globus and use the information for scheduling by using its economy based trading for resources.

	[33].
	T.L. Casavant, J.G. Kuhl. A Taxonomy of Scheduling in General-Purpose Distributed Computing Systems. In IEEE Transaction on Software Engineering, v.14 n.2, pp.141-154, 1988.
The authors present the taxonomy of Scheduling in a general purpose distributed computing systems environment. The taxonomy uses a hierarchical categorization distinguishing local and global, static and dynamic, distributed and non-distributed, co-operative and non-cooperative, optimal and sub optimal and approximate and heuristic schedulers. The classification also takes into account other distinctive characteristics of scheduling systems, such as, adaptive versus non-adaptive, load balancing, bidding (having a protocol framework wherein a manager node asks for bids from contractor nodes; both managers and contractors are autonomous in that a manager may assign the job to any one of the bidders and any one of the contractors may or may not send a bid), probabilistic versus deterministic, and one-time versus dynamic reassignments. Examples for each of the cases have been discussed and an annotated bibliography has been provided.

	[34].
	I. Foster, L.Yang, et al. Conservative Scheduling: Using Predicted Variance to Improve Scheduling Decisions in Dynamic Environments. Proceedings of the ACM/IEEE Supercomputing 2003, pp.31-46, 2003

In this paper, the authors explored using values of predicted mean and variance for the measures of “capacity” of grid resources (instead of using only the predicted capacity) in making data mapping decisions. NWS can predict resource information at some future instance of time. But grid computing systems require information about a resource over duration of time, when the resource is expected to be used for processing. Five algorithms for estimating the cpu load during the interval for execution of a task have been considered: One Step-ahead cpu load prediction Scheduling (OSS), Predicted Mean Interval Scheduling of the effective CPU load (PMIS), Conservative load Scheduling using mean and variance of load (CS), History Mean Scheduling using the mean of the last 5 minutes of load as the cpu load for the task about to start (HMS) and History Conservative Scheduling by adding the mean and the variance of the load during the last 5 minutes (HCS). The results show that schedulers assign fewer loads to less-reliable (high variance) resources. Experimental results show that performance improvement by using CS is modest but consistent as compared to the other four methods.

	[35].
	Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid - Enabling Scalable Virtual Organizations. Proceeding of First IEEE/ACM International Symposium on Cluster Computing and the Grid, pp.6 -31, 2001
Foster et al, (2001) define a grid in the most general terms. The authors work out the requirements for a grid, including the security requirements like authentication and authorization. An open grid architecture is given for resource sharing. The fabric layer of the 5-layer architecture deals with the local resources like computational nodes, storage devices and the network resources. The Connectivity layer provides interconnection among sites through Internet protocols. The Resource layer provides access to resources and information about state of the system and about the performance of the system. The Collective has the functionality of resource discovery, brokering and allocation after security checks. The application layer checkpoints and manages the job. It also deals with failure of the resources. The paper also discusses grid-computing relationships with other technologies such as world wide web.

	[36].
	D. Abramson, J. Giddy, et al. High Performance Parametric Modeling with Nimrod/G: Killer Application for the Global Grid? In Proceedings of the 14th International Conference on Parallel and Distributed Processing Symposium (IPDPS-00), pp.520–528, Los Alamitos, 2000. IEEE.
Abramson et al, 2000, describe the conversion of a tool, called Nimrod, developed for parametric model studies on a local environment into Nimrod/G. Nimrod/G is a scheduling and brokering tool, which can work along with Globus tool-kit on a grid for performing parametric studies on heterogeneous computing resources, which may be available intermittently on a global network. An extensive scientific study experiment has been conducted through Nimrod/G on the Globus Ubiquitous Supercomputing Test-bed Organization (GUSTO). The results show that computing resources spread over USA and Australia may be harnessed to solve a high performance parametric problem. Nimrod/G, as described, does not have many features needed on a grid. These are features like providing priority rights to the local users, reservation of resources etc. However Nimrod/G uses Globus tool-kit for discovery of resources and for security. Nimrod/G also can use grid resources for trying to meet specified deadlines for completion of jobs. Basically the paper describes the up-gradation of Nimrod for making it compatible with the Globus tool-kit and it proves the feasibility of solving a parametric problem on a grid through an experiment on GUSTO.

	[37].
	Foster, C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. International Journal of Supercomputer Applications, v.11 n.2, pp.115-128, 1997.
Foster and Kesselman, outline the features of Globus meta computing infrastructure toolkit. Meta-computers have some similarity with distributed systems that integrate resources of varying capabilities, but high performance considerations in meta computing require radically different programming models. Meta-computers need tools to schedule highly heterogeneous and dynamic computational and communication resources to meet performance requirements. Globus infrastructure toolkit provides capabilities and interfaces for resource discovery through Metacomputing Directory Service (MDS). The resource data is maintained through the Lightweight Directory Access Protocol (LDAP). Security services are provided by Generic Security Services (GSS). This tool-kit has been tested through the I-WAY experiments, wherein 17 research groups, including Supercomputing centers, attempted to solve high performance problems through aggregation of resources. The objective of the Globus project, according to the authors is to develop an Adaptive Wide Area Resource Environment (AWARE).

	[38].
	James Frey, Todd Tannenbaum, et al. Condor-G: A Computation Management Agent for Multi-Institutional Grids. Journal of Cluster Computing, v.5, pp.237-246, 2002.

Condor had been developed to manage the aggregate computational power of a large number of resources within a single administrative domain for solving high performance problems, with fault tolerance and with a user-friendly user interface. Flocks of Condors may be used to deal with multiple Condor systems. However if resources from across multiple domains are to be used, Globus tool-kit provides resource discovery, scheduling and security services. Condor-G uses Globus tool-kit to enable users to leverage resources in multiple domains, as described in Frey et al, (2002). Condor-G uses Grid Security Infrastructure (GSI), Grid Resource Allocation and Management (GRAM) protocol with two-phase commit and fault tolerance features, Metacomputing Directory Service (MDS) and Global Access to Secondary Storage (GASS) services of Globus. MDS, in turn, uses Grid Resource Registration Protocol (GRRP) and Grid Resource Information Protocol (GRIP). The Condor-G uses its GlideIn mechanism for conveying its daemon process to remote resources. It uses GSI authenticated Grid FTP to retrieve Condor executables from a central repository. The paper concludes with description of three major successful experiments conducted on multi domain systems with Condor-G.

	[39].
	Kun Yang, Xin Guo, et al. Towards efficient resource on-demand in Grid Computing. SIGOPS Oper. Syst. Rev. v.37 n.2, pp.37-43, 2003. ACM Press.
Grid transactions take place via networks. Therefore if Resources on Demand (RoD) concept is to be realized in grids, QoS guarantees on internet need to be considered, in addition to management of computational and storage resources. Yang et al (2003) focus on resource sharing from the network technology perspective. The paper applies Active network technology to Grid QoS to deliver efficiently RoD. Active network technology transforms the store and forward network into a store, compute and forward network. In Active Networks functions can be provisioned dynamically as per the policies administered. The architecture of the system uses Policy Based Management (PBM) system. The PBM system has four components: Policy Management Tool to provide an environment for creation or editing of policy by the administrator, Policy Repository as a LDAP directory, Policy Decision Point (PDP) as a part of the grid scheduling and monitoring system and Policy Enforcement Point (PEP) at the router. For a hierarchical scheduling system of the grid, multiple PDPs are co-ordinate by a PDP Manager. The communication between PDP and PEP can be handled through SNMP or Common Open Policy Service (COPS). The feasibility of the concept has been tested on the MANTRIP test bed, with IntServ regions at the end points and with a Diffserv region between the two IntServ regions.

	[40].
	Volker Hamscher, Uwe Schwiegelshohn, et al. Evaluation of Job-Scheduling Strategies for Grid Computing. GRID 2000, pp.191-202, 2002.

Scheduling structures used in computational grids have been discussed in Hamscher, 2002. Performance evaluation of schedulers has been attempted using a Simulation environment for different combinations of job and machine models. Existing Workload traces and logs from real machines have been used in simulation. In Centralized job submission, with single-site scheduling, in-job communications are often ignored, but with multi-site scheduling, the communication between different parts of job is taken into consideration. In a hierarchical scheduler, different policies can be enforced at different levels. In Decentralized job submissions, a scheduler that cannot handle a request (a) redirects a job to a different machine directly –through direct communication, or (b) can forward it to a central job pool from where another machine can pick it up. The simulation shows that the simple FCFS mechanism shows better results than backfilling for the parameters used. For hierarchical schedulers, Backfilling showed better results. Until studies with extensive sets of parameters are not completed, it may not be appropriate to draw generalized conclusions from the measurements of the limited set of simulations.

Appendix – III

List of leading researchers
Dr. Ian Foster

Professor of Computer Science

The University of Chicago

1100 E. 58th Street

Ryerson Hall

Room 155

Chicago, IL 60637

E-mail: foster@cs.uchicago.edu

URL: http://www-fpp.mcs.anl.gov/~foster/
Dr. Karl Czajkowski

Center for Grid Technologies

USC Information Sciences Institute

4676 Admiralty Way, Suite 1001

Marina del Rey, CA 90292 USA

E-mail: karlcz@isi.edu

URL: http://www.isi.edu/~karlcz/
Dr. Carl Kesselman

Director, Center for Grid Technologies

USC/Information Sciences Institute

Research Associate Professor, Computer Science

USC/Information Sciences Institute

4676 Admiralty Way, Suite 1001

Marina del Way, CA 90292-6695

E-mail: carl@isi.edu

URL: http://www.isi.edu/~carl/
Dr. Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne

111, Barry Street, Carlton,

Melbourne, VIC 3053, Australia

E-mail: raj@cs.mu.oz.au

URL: http://www.buyya.com

Dr. Ramin Yahyapour

Computer Engineering Institute
University Dortmund
44221 Dortmund
Germany
Email: Ramin.Yahyapour@udo.edu
Appendix – IV

List of Recent and Forthcoming conferences

1. 8th International Conference

Parallel and Distributed Computing and Networks (PDCN 2005)

February 15-17, 2005

Innsbruck, Australia

http://www.iasted.org/conferences/2005/innsbruck/pdcn.htm
2. 6th International Workshop

International Workshop on Distributed Computing (IWDC 2004)

December 27-30, 2004

Kolkata, India

http://www.isical.ac.in/~iwdc2004
3. 12th International Conference

Advance Computing and Communications (ADCOM 2004)

December 15-18, 2004

Ahmedabad, India

http://ewh.ieee.org/r10/gujarat/adcom2004
4. 16th International Conference

Parallel and Distributed Computing and Systems (PDCS 2004)

November 8-11, 2004

Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.

http://www.iasted.org/conferences/2004/cambridge/pdcs.htm
5. 6th IEEE International Conference

 Cluster Computing (Cluster 2004)

 September 20-23, 2004

 San Diego, California, USA

http://grail.sdsc.edu/cluster2004
6. International Conference

 Embedded and Ubiquitous Computing (EUC 2004)

 August 26-28, 2004

 Aizu, Japan

http://oscar.u-aizu.ac.jp/EUC2004
7. 4th IEEE International Conference

 Peer-to-Peer Computing (P2P 2004)

 August 25-27, 2004

 Zurich, Switzerland

http://femto.org/p2p2004
8. 18th International Symposium

 High Performance Computing Systems and Applications (HPCS 2004)

 May 16-19, 2004

 Winnipeg, Manitoba, Canada

http://www.cs.umanitoba.ca/~hpcs04
Appendix – V

Cross Referencing Graph

Representation of the graph:

	Author’s Name
	 X

	Referred

By:

	Author’s

Name

[image: image20.png]

Appendix – VI

Email Sent to Researchers

	From: Henan Zhao <zhaoh9@cs.man.ac.uk>

	Subject: Re: Seeking help on your paper: A Hybrid Heuristic for DAG Scheduling on Heterogeneous Systems

	Date: Thu, 17 Jun 2004 11:28:53 +0100

	To: Aggarwal M <aggarwa@uwindsor.ca>

		

	

	Hello Aggarwal

Sorry about the incorrect link on my web page. There are some problems with that, I will sort it out soon.

The attached file is a copy of the HCW paper. You also can find it in the proceeding of IPDPS'04 conference.

Good luck with your survey and your study.

Cheers

Henan

Aggarwal M wrote:

Dear Henan Zhao,

I am a Master's Student at the University of Windsor, Canada. My research area is Grid Scheduling
Techniques. I am conducting a survey on Grid Scheduling. I
am interested in reading your paper "A Hybrid Heuristic for
DAG Scheduling on Heterogeneous Systems".

However I am not able to get a copy. Can you please send it
to me electronically?

I am highly thankful to you for your time in reading my
mail.

Thanking you again,

Mona Aggarwal

Graduate Student
School of Computer Science
University of Windsor

[image: image23.png]

 HYPERLINK "http://webmail1.uwindsor.ca/Session/29722-qs2niBo0rXaa1lzGxyhN/MessagePart/INBOX/1397-02-B/paper.pdf" \o "Click to open the attachment in a new window" \t "_blank" Attached File: paper.pdf (205Kbytes)

PAGE
0

_1142618119

