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ABSTRACT
Predicting the three-dimensional structure of proteins from their linear sequence continues to be a major challenge in modern Biology. One of the major obstacles in addressing this problem is that the traditional computational methods are not powerful enough to search for the correct structure in the huge conformational space.
Much research related to protein fold recognition has involved the use of the protein threading technique. As it is known to be NP-hard, researchers have used various methods such as Monte Carlo, Neural Networks, Support Vector Machine, Genetic Algorithms to solve this problem. However, research involving the parallel evolutionary methods for protein fold recognition is less well known. This report provides a comprehensive survey on using parallel evolutionary methods for protein fold recognition. 
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1. INTRODUCTION
Predicting the three-dimensional structure of a protein from its linear sequence continues to be one of the major challenges in Molecular Biology. A protein is composed of a linear chain of amino acids folded into a specific three dimensional structure. 
Currently the laboratory methods that are available for determining the three-dimensional structure of a protein are X-ray crystallography and nuclear magnetic resonance (NMR). These methods are very time-consuming and expensive. Although many advances have been suggested and employed in these techniques, owing to the rapid growth in the number of completely-sequenced genomes, the need for fast and reliable computational method to derive structures from protein sequences is increasing. 
It has been recognized that proteins with no apparent sequence similarity or functional similarity could have similar structural folds. The total number of structural folds in nature is restricted to be quite small, at least two orders of magnitude fewer than the number of known protein sequences. Fold recognition methods attempt to recognize the “correct” template from a structure template library for the query protein, and generate an alignment between the query and the recognized template protein, from which the structure of query protein can be predicted.

Various fold recognition methods have been discussed and tested over the years, however there have been two major observations: Firstly, current energy functions are still not accurate enough to calculate the free energy of a given conformation; Secondly, no existing direct computational method is able to identify the conformation. The size of the conformation space is huge. Lathrop [1994] has described and proved that the protein threading problem is NP-complete, and hence should be addressed by effective heuristics. Akutsu et al. [1999] have also proved that this problem is MAX-SNP-hard.
To overcome the computational difficulty, researchers have used many techniques, such as Molecular Dynamics, Monte Carlo, Genetic Algorithms, and Neural Network. Jones [1999] describes a new protein fold recognition method GenTHREADER, which uses a neural network to rank the template. The GenTHREADER method has also been improved in recent years [Mcguffin and Jones 2003].  Raval et al. [2002] describe a Bayesian network model for protein fold and remote homologue recognition. Taylor and Jonassen [2004] present a structural pattern-based method. Xu [2005] describes a Support Vector Machine (SVM) regression approach for protein threading. Cheng and Baldi [2006] present a machine learning information retrieval approach to protein fold recognition.  
Many researchers have used evolutionary methods in solving protein fold recognition. Yadgari et al. [2001] use the genetic algorithm paradigm, an efficient search method that is based on evolutionary idea to perform sequence to structure alignments. Liang and Wong [2001] employ evolutionary Monte Carlo for protein folding simulations. Krasnogor et al. [2002] introduce a Multimeme Algrithm for protein structure prediction. Unger [2004] describes a general framework of how genetic algorithms can be used for structure prediction, discusses and compares the published significant studies using this framework in recent years. 
Protein fold recognition can also be solved by parallel methods. Yap [1998] presents two parallel computational methods for analyzing biological sequences. Some researchers have used parallel evolutionary methods for this problem. Anbarasu et al. [2000] use the island parallel genetic algorithm for multiple molecular sequence alignment. Nguyen et al. [2002] use parallel hybrid genetic algorithm for multiple protein sequences alignment. Day et al. [2003] present a multiobjective implementation of the fmGA (MOfmGA), and a farming model for the parallel fmGA. Yanev and Andonoy [2003] present a network flow formulation for protein threading. Thomas and Amato [2004] present a new computational technique for studying protein folding that is based on probabilistic roadmap methods for motion planning. Shi et al. [2004] reformulate protein fold recognition into a multi-objective optimization problem and propose a multi-objective feature analysis and selection algorithm. Other researchers [Islam and Ngom 2005, Wiese and Hendriks 2006] also propose parallel evolutionary algorithms for structure prediction in their published papers. 
The remaining part of this survey report is organized as follows: Section 2 will describe protein fold recognition briefly. Section 3 will describe the literature on evolutionary methods. Section 4 contains detailed descriptions of parallel evolutionary methods. Section 5 describes relatively detailed descriptions of research on the use of parallel evolutionary methods for protein fold recognition. Finally, Section 6 draws some concluding comments. 
2. PROTEIN FOLD PREDICTION
2.1 Introduction
Predicting the three-dimensional structure of a protein from its linear sequence continues to be one of the major challenges in Molecular Biology. A protein is composed of a linear chain of amino acids linked by peptide bonds and folded into a specific three-dimensional structure. There are 20 amino acids which can be divided into several classes on the basis of size and other physical and chemical properties. The main classification is into hydrophobic residues, and hydrophilic residues [Unger 2004]. 
A protein consists of a sequence of amino acids and folds into a unique, stable three-dimensional structure in its native state. Though there may be some dynamic motion in solvent in a protein structure, such movement is generally rather small, and hence a protein structure can be considered as a static geometric object [Xu et al. 2002]. 
It has been recognized that proteins with no apparent sequence similarity or functional similarity could have similar structural folds. The total number of structural folds in nature is restricted to be quite small, at least two orders of magnitude fewer than the number of known protein sequences. 
Recognition of native-like structural folds of an unknown protein from solved protein structures represents the first step towards understanding its biological functions and serves as the foundation for its detailed tertiary structure prediction by comparative modeling [Kim et al. 2003].
2.2 Problem Definition
Protein fold recognition methods attempt to recognize the “correct” template from a structure template library for a query protein, and generate an alignment between the query and the recognized template protein, from which the structure of query protein can be predicted. 
Protein fold recognition using the protein threading technique has demonstrated a great success [Xu et al. 2002]. There are four steps for the threading technique for protein fold prediction for an amino acid sequence. 
    Step1: Construct a protein structure template library.
    Step2: Design a scoring function to evaluate alignment between the query protein and the template protein.
    Step3: Design an efficient algorithm for searching over all the templates in the library.
    Step4: Choose the template given the best alignment.
2.3 Protein Threading
The protein threading problem consists of testing whether or not a target sequence query is likely to fold into a three-dimensional template structure core by searching for an alignment which minimizes a suitable score function. It is important, because the biological function of proteins is determined by their three-dimensional shape, and their shape is determined by their linear sequence [Yanev et al. 2003]. 
A query is a sequence of amino acids of a given protein. A template is also a sequence of amino acids but includes the three-dimensional coordinates of all atoms for each amino acid in the sequence. In three-dimensions, a template is a series of cores (such as α-helix, β-sheet), loops, links and turns. Cores, loops, links and turns are the basic folds that subsequences of a sequence will take, and the sequence of amino acids determines how a protein folds in 3D. Threading a query against a template is to determine which basic folds the amino acids of the query belong to and then compute the free energy of the query when it assumes the full fold of the template [Islam and Ngom 2005]. 
The protein threading process is shown in Figure 2.1.
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Figure 2.1: Protein Threading Process. From [Islam and Ngom 2005, p2]
Threading is a difficult computational problem. Lathrop [1994] has described and proved that the protein threading problem is NP-complete, and hence should be addressed by effective heuristics. Akutsu et al. [1999] have proved that the protein threading problem is MAX-SNP-hard, which means that it cannot be approximated to an arbitrary accuracy in polynomial time.
2.4 Overview of Methods

To overcome the computational difficulty, researchers have used many techniques, such as Molecular Dynamics, Monte Carlo, Genetic Algorithms, and Neural Network. The following part shows various successful approaches for protein fold recognition, while the evolutionary methods will be discussed in section 3.
2.4.1 Neural Network
Jones [1999] describes a new method for fold recognition, which can be divided into three stages: alignment of sequences, calculation of pair potential and salvation terms and finally, evaluation of the alignment using a neural network. Jones [1999] implemented a program called GenTHREADER. 
Mcguffin and Jones [2003] have implemented some improvements to GenTHREADER. 
2.4.2 Bayesian Networks
Raval et al. [2002] present a Bayesian network approach for protein fold and superfamily recognition. The Bayesian network approach is a framework which combines graphical representation and probability theory, which includes, as a special case, hidden Markov models [Raval et al. 2002]. 
Raval et al. [2002] claim that the cross validation experiments using Bayesian classification demonstrate that the Bayesian network model which incorporates structural information outperforms a hidden Markov model trained on amino acid sequences alone. 
2.4.3 Structural Pattern-Based Method
Taylor and Jonassen [2004] address the problem of evaluating the register of a sequence on a structure based on the matching of structural patterns against a library derived from the protein structure databank. They develop a method (SPREK) for the evaluation of protein models based on residue packing interactions. 
2.4.4 Support Vector Machine (SVM) 

The calculation of Z-score is time-consuming and not suitable for genome-scale structure prediction, and Z-scores are also hard to interpret when the threading scoring function is the weighted sum of several energy items of different physical meanings. Several programs such as GenTHREADER [Jones 1999] use neural networks to rank the template. The neural network method treats the template selection problem as a classification problem, which is not good enough for three-dimensional structure prediction [Xu 2005]. Xu [2005] presents a Support Vector Machine (SVM) regression approach for protein fold recognition. 

The experimental results show that SVM regression method has much better performance than the composition-corrected Z-score method, and SVM regression method also performs better than SVM classification method [Xu 2005]. 
2.5 Summary

Much of research related to the protein fold recognition has involved the use of the protein threading technique. As it is known to be NP-hard, researchers have used various methods such as Monte Carlo, Neural Networks, Support Vector Machine and so on to solve this problem. Those different methods help us expand our view of resolving protein fold recognition problem. 
Table 2.1 shows the list of the papers we have discussed in this section. 
	Year
	Paper
	Major Contribution

	1999
	GenTHREADER: An efficient and reliable protein fold recognition method for genomic sequences                   

    [Jones]
	A neural network method for fold recognition

	2002
	A Bayesian network model for protein fold and remote homologue recognition 

[Raval et al.]
	A Bayesian network approach for protein fold and superfamily recognition 

	2003
	Improvement of the GenTHREADER method for genomic fold recognition
[Mcguffin and Jones]
	Impovement of the GenTHREADER

	2004
	A structural pattern-based method for protein fold recognition
[Taylor and Jonassen]
	A structural pattern-based method for protein fold recognition 

	2005
	Fold recognition by predicted alignment accuracy                       

   [Xu]
	A SVM regression approach for protein fold recognition


Table 2.1 
3. EVOLUTIONARY METHODS

3.1 Introduction

Scientific discussion of evolution dates back more than 200 years. Darwin suggested that slight variations among individuals significantly affect the gradual evolution of the population. This differential reproductive process of varying individuals is called natural selection. 
Evolutionary methods, which are inspired by the analogy of evolution and population genetics, are stochastic search and optimization techniques. They have been demonstrated to be effective and robust in searching huge spaces in a wide range of applications.
3.2 Evolutionary Methods (EMs)
Evolutionary methods generally involve techniques implementing mechanisms such as reproduction, mutation, recombination, natural selection and survival of the fittest. Evolutionary methods usually are comprised of genetic algorithms (GAs), genetic programming (GP), evolutionary programming (EP) and an evolution strategy (ES).
3.2.1 Genetic Algorithms
Genetic algorithms (GAs) are population-based search algorithms. GAs became a widely recognized optimization method as a result of the work of John Holland in the early 1970s, and particularly his book in 1975.
The individuals of population in a GA are usually represented as fixed length binary strings but there are GAs that use strings from higher cardinality alphabets and with variable length. Recombination (crossover) is the primary operator and mutation is considered as a secondary search operator [Adamidis 1998]. 
3.2.2 Genetic Programming

Genetic programming (GP) is a form of evolutionary method in which the individuals in the evolving population are computer programs rather than bit strings. Programs applying a GP are typically represented by trees. Koza (1992) describes the basic genetic programming approach in his book.
3.2.3 Evolutionary Programming

Evolutionary programming was originally conceived by Lawrence J. Fogel in 1966. Evolutionary programming is a stochastic optimization strategy similar to GAs. 
EP uses a problem-oriented representation. Mutation is the primary operator and depends on the representation used. It is usually adaptive. Recombination is rarely used [Adamidis 1998]. 

3.2.4 Evolution Strategy
Initially ES used selection and mutation on one individual only. Recombination and larger populations were introduced later. Real value representation is usually used. Mutation is the primary operator [Adamidis 1998]. 
3.3 Use of EMs for Protein Fold Recognition

Many researchers have used evolutionary methods in solving protein fold recognition, such as genetic algorithms and evolutionary Monte Carlo. 
3.3.1 Genetic Algorithms
The first study to introduce GAs to the realm of protein structure prediction was that of Dandekar and Argos [1992]. In 1993, Unger and Moult [1993] used GAs to fold proteins on a two-dimensional square lattice in the HP model. 
In a recent study, Yadgari et al. [2001] address the genetic algorithm paradigm used to perform sequence to structure alignments. The sequence/structure pairs in their research were taken from a database of structural alignments where the sequence of one protein was threaded through the structure of the other.  
Unger [2004] describes a general framework of how genetic algorithms can be used for protein structure prediction. Using this framework, the significant studies that were published in recent years are discussed and compared by Unger [2004]. Unger [2004] presents the rationale of why genetic algorithms are suitable for protein structure prediction and claims that GAs are efficient general search algorithms. 
3.3.2 Evolutionary Monte Carlo

Monte Carlo methods have traditionally been employed to address the protein folding problem. Monte Carlo algorithms are base on minimization of an energy function, through a path that does not necessarily follow the natural folding pathway. The GA approach incorporates many Monte Carlo concepts [Unger 2004].
Traditional Monte Carlo and molecular-dynamics simulations tend to get trapped in local minima, so the native structure cannot be located and the thermodynamic quantities cannot be estimated accurately [Liang and Wong 2001]. To resolve this problem, Liang and Wong [2001] propose an evolutionary Monte Carlo (EMC) approach for protein folding simulations.
EMC can be applied successfully to simulations of protein folding on simple lattice models, and to finding the ground state of a protein. In all cases, EMC is faster than the genetic algorithm and the conventional Metropolis Monte Carlo, and in several cases it finds new lower energy states [Liang and Wong 2001]. 
3.4 Summary
The evolutionary methods discussed in this section are the basis of parallel evolutionary methods, which we will discuss in the next section. Table 3.1 shows the list of the papers we have discussed in this section.
	Year
	Paper
	Major Contribution

	1992
	Potential of genetic algorithms in protein folding and protein engineering simulations
[Dandekar and Argos]
	Genetic algorithms for protein folding and protein engineering simulations

	1993
	Genetic algorithms for protein folding simulations
[Unger and Moult]
	Genetic algorithms to fold proteins on a two-dimensional square lattice in the HP model

	2001
	Genetic threading         

 [Yadgari et al.]
	An genetic algorithm paradigm for protein threading

	2001
	Evolutionary monte carlo for protein folding simulations            

 [Liang and Wong]
	Evolutionary Mote Carlo approach for protein folding simulations

	2004
	The genetic algorithm approach to protein structure prediction             

  [Unger]
	A general framework of genetic algorithms for protein structure prediction


Table 3.1
4. PARALLEL EVOLUTIONARY METHODS (PEM)
4.1 Introduction

Evolutionary methods, such as GAs, ES, GP and EP, are powerful search techniques based on the principle of natural selection. Evolutionary methods have been used successfully to solve problems in many different disciplines, such as business, engineering, and science. Evolutionary methods are generally able to find good solutions in reasonable time, but as they are applied to harder and bigger problems, the required time to find adequate solutions increases. One effort to make evolutionary methods faster is to use parallel implementations. 
In the late 1950’s, John Holland proposed an architecture for parallel computers that could run an undetermined number of programs concurrently [Paz 1998]. An early study of how to parallelize genetic algorithms was conducted by Bethke (1976) [Paz 1998]. Muhlenbein [1991] presented a distributed selection scheme for a parallel genetic algorithm. For ES, Rudolph (1991) implemented one of the first distributed models. For EP, Duncan (1993) was an important milestone [Alba and Tomassini 2002].  
According to Alba and Tomassini [2002], parallel evolutionary methods are particularly easy to implement and promise substantial gains in performance. Alba and Tomassini [2002] explain that “First of all, parallel evolutionary methods are naturally prone to parallelism, since most variation operations can be easily undertaken in parallel.”
4.2 Parallel Computer Architectures
The standard model of Flynn [Alba and Tomassini 2002] is still widely accepted for classifying computer architectures. Flynn’s taxonomy is based on the notion of instruction and data streams. There are four possible combinations, conventionally called single instruction single data stream (SISD), single instruction multiple data stream (SIMD), multiple instruction single data stream (MISD), and multiple instruction multiple data stream (MIMD) [Alba and Tomassini 2002]. 
Figure 4.1 shows the three most important model architectures. 
[image: image2.emf]
Figure 4.1 (a) SISD architecture; (b) SIMD architecture; 
 (c) MIMD architecture; From [Alba and Tomassini 2002, p446]
In 2003, Osemera et al. [2003] piece together the knowledge of evolution with the help of Biology, informatics and physics to create a complex parallel evolutionary structure, in order to speed up the creation of optimization algorithms with high quality features.
4.3 Models of Parallel Evolutionary Methods
Some of the most well-known parallel implementations are depicted in Figure 4.2. 
[image: image3.emf]
Figure 4.2 (a) global parallelization; (b) coarse grain; (c) fine grain. Many hybrids have been defined by combining parallel evolutionary methods at two levels: (d) coarse and fine grain; (e) coarse grain and global parallelization; and (f) coarse grain at the two levels. From [Alba and Tomassini 2002, p450]
Global parallelization, shown in Figure 4.2(a), provides a panmictic-like evolution with evaluations performed in parallel. This is faster than a sequential panmictic evolutionary methods and does not require load balancing except in the case of GP, where individuals to be evaluated can be of very different complexity [Alba and Tomassini 2002].
In Figure 4.2(b), we can see the popular multipopulation or island model, in which several EA subalgorithms run in parallel in a connected mode [Alba and Tomassini 2002]. 
Figure 4.2(c) shows the cellular evolutionary algorithm.

Figure 4.2(d)-(f) shows three hybrid algorithms in which a two-level approach of parallelization in undertaken [Alba and Tomassini 2002]. 
4.4 Discussion

Adamidis [1998] claims that parallel evolutionary algorithms improve the performance of evolutionary algorithms not only in terms of speedup but also in terms of the quality of the solution found. Parallel evolutionary algorithms maintain more diverse subpopulations mitigating the problem of premature convergence. They also naturally fit the model of the way evolution is viewed as occurring, with a large degree of independence in the global population. 
Paz [1998] claims that the research on parallel GAs is dominated by studies on coarse-grained algorithms. The combination of different parallelization strategies can result in faster algorithms [Paz 1998]. 
Alba and Tomassini [2002] report a modern survey of parallel models and implementations of evolutionary algorithms.
5. USE OF PEM FOR PROTEIN FOLD PREDICTION
5.1 Introduction

Many researchers use parallel methods to solve the protein fold recognition problem in recent studies. While some researchers also use parallel methods to solve RNA sequence problem. There are three domains of biological sequences, namely DNA, RNA, and protein. Some research mainly deals with the alignment in one domain. However, the method can be easily extended to deal with other domains. So in the following part, some parallel evolutionary methods for biological structure prediction are also discussed.  
5.2 Parallel Genetic Algorithms
5.2.1 Parallel Hybrid GAs 
In 1995, Carpio et al. [1995] were the first to present a parallel hybrid genetic algorithm for three dimensional structure predictions of polypeptides. Their previous research based on a simple genetic algorithm is insufficient to produce better fit conformers, so Carpio et al. [1995] have proposed an improvement in two substantial aspects. The first is a parallelization of the original algorithm to enrich the diversity of conformers in the population and the second a hybridization of the simple GA in order to process the atoms of the side chains. Carpio et al. [1995] claim that a comparison of the best fit individual after the 500th generation obtained by the hybrid GA reveals more accurately the level of evolution of the process. 

In 2002, Nguyen et al. [2002] propose a parallel hybrid genetic algorithm for solving the sum-of-pairs multiple protein sequence alignment problem. They present a new GA-based method for more efficient multiple protein sequence alignment.

Nguyen et al. [2002] claim that experimental results of benchmarks from the BAliBASE show that the proposed method is superior to MSA, OMA and SAGS methods with regard to quality of solution and running time. It can be used for finding multiple sequence alignment as well as testing cost functions. 
5.2.2 Island Parallel GAs
Anbarasu et al. [2000] describe an iPGA strategy that runs on a distributed network of workstations for solving multiple molecular sequence alignment. This approach is based on the island parallel genetic algorithm that relies on the fitness distribution over the population of alignments. The algorithm searches for an alignment among the independent isolated evolving populations by optimizing weighted sum of pairs objective function which measures the alignment quality. 

Anbarasu et al. [2000] state that the parallel approach is implemented on PARAM 10000, a parallel machine developed at the Center of Development of Advanced Computing, Pune, and is shown to consistently perform better than the sequential genetic algorithm. The algorithm yields alignments that are qualitatively better than an alternative method, ClustalW. 
5.2.3 Parallel Varying Mutation GAs 
Previous researches by others have made progress on genetic algorithms, but a common practice has been to run the GA with its parameters set to constant values. Duran [2003] addresses generational parallel varying mutation genetic algorithms and their applications in his Ph.D. thesis. 

Duran [2003] claims the central theme of his work is the design of efficient and effective generational parallel varying mutation GAs that can be used in practical applications to optimize difficult and highly-constrained problems. Duran [2003] describes and contrasts two models for designing generational varying mutation GAs. 

Duran [2003] claims that GA-SRM can be successfully applied to real world problem in which efficiency in processing time and computer memory is a major issue. The concept of GA-SRM can also be effective for multi-objective optimization of real world applications [Duran 2003].
5.3 Multi-objective Evolutionary Approach

5.3.1 Multi-objective fmGA
Previous research using the Simple genetic algorithm (GA), messy GA (mGA), fast messy GA (fmGA), and Linkage Learning GA (LLGA) has made progress on this problem. However, past research used off-the-shelf software such as GENOCOP, GENESIS, and mGA [Day et al. 2003]. Day et al. [2003] present a modified fmGA as multi-objective implementation of the fmGA (MOfmGA) and a farming model for the parallel fmGA for protein structure prediction. 
Day et al. [2003] claim their progress of using MOfmGA had been modified to scale its efficiency to 4.7 times a serial run time. 
5.3.2 Multi-Objective Feature Analysis and Selection Algorithm 
In pattern recognition terminology, protein fold recognition (PFR) is a multi-class classification problem to be solved by employing feature analysis and pattern classification techniques. Shi et al. [2004] reformulate PFR into a multi-objective optimization problem and propose a Multi-Objective Feature Analysis and Selection Algorithm. 

Shi et al. [2004] claim that MOFASA yields higher accuracy on both cross validation and testing data sets based on experiments on the Structural Classification of Protein data set. 
5.4 Parallel Evolution Strategy

Previous work such as the Genetic Algorithm approach [Yadgari et al 1998, 2001] by others has made some progress on this problem but current computational approaches to threading are time-consuming and data-intensive. Yanev et al. [2003] initially introduced a parallel divide and conquer approach for protein threading. 
In 2005, Islam and Ngom [2005] propose an evolution strategy for protein threading, and also develop two parallel approaches for fast threading. The parallelization is based on a master-slave architecture [Islam and Ngom 2005].

Islam and Ngom [2005] claim that two parallel approaches obtained at least better results than current comparable approaches, as well as significant reduction in execution time.
5.5 P-RnaPredict Approach

Wiese and Hendriks [2006] present a parallel evolutionary algorithm called P-RnaPredict for RNA secondary structure prediction. P-RnaPredict is a fully parallel implementation of a coarse-grained distributed EA for RNA secondary structure prediction, and is based on RnaPredict, a serial RA for the same purpose which encodes RNA secondary structures in permutations and includes two stacking-energy based thermodynamic models. 

Wiese and Hendriks [2006] state the results that P-RnaPredict was shown to possess good prediction accuracy, especially on shorter sequences and P-RnaPredict succeeds in predicting structures with higher true positive base pair counts and lower false positives than mfold on specific sequences.

5.6 Other Parallel Approach

5.6.1 Parallel Computation in Biological Sequence Analysis
Yap et al. [1998] propose two parallel computational methods for analyzing biological sequences. The first method is to parallelize the comparison algorithm used to retrieve sequences that are homologous to a query sequence. The second method uses a coarse grain parallelism approach to align a number of homologous sequences with each other.

These two parallel computational methods were implemented and evaluated on an Intel iPSC/860 parallel computer. Yap et al. [1998] claim that the resulting performance demonstrates that parallel computational methods can significantly reduce the computational time needed to analyze the sequences contained in large database but do not explain what they mean by “significantly”. 

5.6.2 Network Flow Formulation
In 2003, Yanev and Andonoy [2003] present a network flow formulation for protein threading. Their research uses the power of parallel computers in order to speed up the computation. They formulate protein threading as a network flow model proved to be equivalent to the shortest path problem on a graph with a particular structure. Yanev and Andonoy [2003] proposed three MIP models with the popular Lathrop_Smith’s(b&b) algorithm. 
Yanev and Andonoy [2003] claim that the preliminary results of parallel code are extremely encouraging-huge problem instances have been solved in a reasonable time but do not explain what they mean by “encourage-huge” and “reasonable”. 
5.6.3 Probabilistic Roadmap Methods

Thomas and Amato [2004] describe a new computational technique for studying protein folding that is based on probabilistic roadmap methods for motion planning. They claim that their technique yields an approximate map of a protein’s potential energy landscape that contains thousands of feasible folding pathways, and they had validated their method against known experimental results. Other simulation techniques, such as molecular dynamics or Monte Carlo methods, require many orders of magnitude more time to produce a single, partial, trajectory.

Thomas and Amato [2004] report their experiments parallelizing their method using STAPL, that is being developed in the Parasol Lab at Texas A&M. With STAPL, they were able to easily parallelize their sequential code to obtain scalable speedups.
5.7 Summary

Table 5.1 shows the list of the papers we have discussed in this section.
	Year
	Paper 
	Major Contribution

	1995
	A parallel hybrid GA for peptide 3-D structure prediction

[Carpio et al.]
	A parallel hybrid GA for peptide 3-D structure prediction 

	1998
	Parallel computation in biological sequence analysis 
 [Yap et al.]
	Two parallel computational methods for analyzing biological sequences

	2000
	Multiple molecular sequence alignment by island parallel genetic algorithm 

[Anbarasu et al.]
	Island parallel genetic algorithm for multiple molecular sequence alignment

	2002
	Aligning multiple protein sequences by parallel hybrid genetic algorithm 

[Nguyen et al.]
	A parallel hybrid genetic algorithm for solving the sum-of-pairs multiple protein sequence alignment

	2003
	Generational parallel varying mutation GAs and their applications 

[Duran]
	Generational parallel varying mutation genetic algorithms and their applications

	2003
	Protein structure prediction by applying an evolutionary algorithm

 [Day et al.]
	Multiobjective implementation of the fmGA (MOfmGA) and a farming model for the parallel fmGA

	2003
	Solving protein threading problem in parallel

 [Yanev and Andonoy]
	A network flow formulation for protein threading

	2004
	Parallel protein folding with STAPL

[Thomas and Amato]
	A new computational technique for studying protein folding that is based on probabilistic roadmap methods for motion planning

	2004
	Multi-class protein fold recognition using multi-objective evolutionary algorithms 

[Shi et al.]
	A Multi-Objective Feature Analysis and Selection Algorithm (MOFASA) for protein fold recognition

	2005
	Parallel evolution strategy for protein threading 

[Islam and Ngom]
	A novel approach based on evolution strategy for protein threading 

	2006
	A detailed analysis of parallel speedup in P-RnaPredict - an evolutionary algorithm for RNA secondary structure prediction 

[Wiese and Hendriks]
	A parallel evolutionary algorithm for RNA secondary structure prediction


Table 5.1
6. CONCLUDING COMMENTS
The research reviewed in this survey has shown that parallel evolutionary methods can be used to resolve the protein fold recognition problem in high performance. Various claims have been made regarding the parallel evolutionary methods for protein fold recognition: 

“Parallel computational methods allow researchers to analyze biological sequence at a much higher speed than the sequential methods and also make it possible for scientists to analyze problems that were previously considered too large.”[Yap et al. 1998]

“A marriage of mathematical programming with parallel programming theory and algorithms can be a valuable tool for attacking optimization problems now arising in computational biology.” [Yanev and Andonoy 2003] 
However, the computational difficulty is just one aspect of the protein fold recognition problem. The other notice of the protein fold recognition is that current energy functions are still not accurate enough to calculate the free energy of a given conformation. An efficient parallel evolutionary method and accurate energy functions are what I need in my future research. 
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APPENDIX
Annotations on the Milestone Papers
[Anbarasu et al. 2000]

This paper addresses an evolution-based approach for solving multiple molecular sequence alignment. The approach is based on the island parallel genetic algorithm that relies on the fitness distribution over the population of alignments. The algorithm searches for an alignment among the independent isolated evolving populations by optimizing weighted sum of pairs-objective function which measures the alignment quality. 

Some of the most widely used multiple molecular sequence alignment packages like ClustalW, Mutal and Pileup are based on dynamic programming. They have advantages of being fast and simple as well as reasonably sensitive, but their main drawback is the local minimum problem. In this paper, the authors describe an iPGA strategy that runs on a distributed network of workstations. 

The authors claim that the parallel approach is implemented on PARAM 10000, a parallel machine developed at the Center of Development of Advanced Computing, Pune, and is shown to consistently perform better than the sequential genetic algorithm. The algorithm yields alignments that are qualitatively better than an alternative method, ClustalW. 

The authors claim that asynchronous implementation using multi-form subpopulations for multiple molecular sequence alignment problem is in progress.

· Related work:

GOLDBERG, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning, Addison–Wesley, New York.

DAVIS, L. 1991. The Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York.
· Later reference to paper by others:

CARLOS, A. AND CARPIO, M.D. 2002. Folding pattern recognition in proteins using spectral analysis methods. Genome Informatics 13, 163-172.

[Carpio et al. 1995]
This paper addresses a parallel hybrid genetic algorithm for three dimensional structure predictions of polypeptides.

Previous research based on simple genetic algorithm is insufficient to produce better fit conformers, so the authors propose improvement in two substantial aspects. The first is a parallelization of the original algorithm to enrich the diversity of conformers in the population and the second is a hybridization of the simple GA in order to process the atoms of the side chains. 

The authors illustrate the performance of the parallel hybrid GA predicting the structure of the protein CRAMBIN. The authors claim that a comparison of the best fit individual after the 500th generation obtained by the hybrid GA reveals more accurately the level of evolution of the process. 

Finally, the authors claim that in conclusion, the local optimization of conformers generated by the GA, proposed here, seems to improve the performance of the program significantly. 

· Related work:

UCHIDA, M., DEL CARPIO, C. AND SASAKI, S. 1994. Proceedings of the 17th Symposium on Chemical Information(JCS), 82-85.

DEL CARPIO, C. AND SASAKI, S. 1995. Proceedings of the XIth International Conference on Computers in Chemical Research and Education. Paris-France.
· Later reference to paper by others: N/A

[Day et al. 2003]
This paper addresses the problem of protein structure prediction using a modified fmGA as multiobjective implementation of the fmGA (MOfmGA) and a farming model for the parallel fmGA. 

Previous research using the Simple genetic algorithm (GA), messy GA (mGA), fast messy GA (fmGA), and Linkage Learning GA (LLGA) has made progress on this problem. However, past research used off-the-shelf software such as GENOCOP, GENESIS, and mGA. In this paper the authors focus on tuning fmGA in an attempt to improve the effectiveness and efficiency of the algorithm in solving a protein structure and in finding better ways to identify secondary structures. 

In this paper, problem definition, protein model representation, mapping to algorithm domain, tool selection modifications and conducted experiments are discussed. 

The authors claim that their progress of using MOfmGA have been modified to scale its efficiency to 4.7 times a serial run time and computational results support their hypothesis that the MO version provides more acceptable results.

The authors claim that future studies will involve beta structures and the villin headpiece as well as participation in CASP.

· Related Works:

LAMONT, G. B. AND MERKLE, L. D. 2002. Introduction to bioinformatics for computer scientists. Chapter in W. Corne’s book, August 2002.
LIPKOWITZ, K. AND BOYD, D. 1997. Reviews in Computational Chemistry 10, VCH Publishers, New York.

SCHULZE-KREMER, S. 2000. Genetic algorithms and protein folding. Methods in Molecular Biology 143,175–222.

· Later reference to paper by others: N/A

SCAPIN, M.P AND LOPES, H.S. 2004. Protein structure prediction using an enhanced genetic algorithm for the 2D HP model. In Proceedings of the 3rd Brazilian Workshop on Bioinformatics. 

[Duran 2003]
This thesis addresses the problem of generational parallel varying-mutation genetic algorithms and their applications. Previous research by others has made progress on genetic algorithms, but a common practice has been to run the GA with its parameters set to constant values. In order to pursue better balances for crossover and mutation, one way is to use adaptive or self-adaptive mechanisms to control the rate of operators. Another approach seeks to combine crossover with varying mutation rates during the course of a run. 

The author claims that the central theme of his work is the design of efficient and effective generational parallel varying mutation GAs that can be used in practical applications to optimize difficult and highly constrained problems. In this thesis, the author describes and contrasts two models of designing generational varying mutation GAs. One of the models is a simple extension of a canonical GA that applies varying mutations mostly after crossover. The second, called GA-SRM, is the proposed model that applies varying mutations only parallel to crossover. 

In this thesis, the improved GA-SRM is extended to the two-dimensional image halftoning problem and an accelerated image halftoning technique using GA-SRM with tiny populations is proposed. Simulation results show that GA-SRM can be successfully applied to real world problem in which efficiency in processing time and computer memory is a major issue. The author also claims that the concept of GA-SRM can also be effective for multiobjective optimization of real world application based on simulation experiments to simultaneously generate halftone images with various combinations of gray level precision and spatial resolution using GA-SRM.

    Finally, the author claims that the future work is to pursue co-adaptation in GA-SRM and to increase its performance in problems that exhibit strong epistasis. Also the author would like to extend the concept of GA-SRM to cellular GAs. The application of the improved GA-SRM to other imaging problems, and to domains that present serious challenges to optimization techniques, such as bioinformatics, should be investigated. 

· Related Works:

AGUIRRE, H., TANAKA, K. AND SUGIMURA, T. 1999. Cooperative model for genetic operators to improve GAs. In Proceedings IEEE Int’l Conf. on Information, Intelligence, and Systems, 98–106.

AGUIRRE, H., TANAKA, K., SUGIMURA, T. AND OSHITA, S. 2000. Cooperative-competitive model for genetic operators: Contributions of extinctive selection and parallel genetic operators. In Proceedings Late Breaking Papers Genetic and Evolutionary Computation Conference, 6–14. Morgan Kaufmann.
· Later reference to paper by others: N/A

[Islam and Ngom 2005]
This paper addresses the problem of protein threading using parallel evolution strategy. Previous work such as Genetic algorithms approach by others has made some progress on this problem but current computational approaches to threading are time-consuming and data-intensive. In this paper, the authors propose an evolution strategy for protein threading problem, and also develop two parallel approaches for fast threading.

The authors have developed a novel approach, for protein threading, based on evolution strategy. The Single Query Single Template Parallel ES Threading (SQST-PEST) method threads one query against one template; The Single Query Multiple Templates Parallel ES Threading (SQMT-PEST) method threads one query against a set of templates. The parallelization is based on a master-slave architecture.

Experiments use High Performance Computing environment, SHARCNET (Shared Hierarchical Academic Research Computing Network) as computing platform, implementing two parallel approaches for fast threading based on an evolution strategy for protein threading.

The authors claim that two parallel approaches have obtained at least better results than current comparable approaches, as well as significant reduction in execution time, but do not explain what they mean by “at least better”. The future work is to test algorithms provided in this paper on much harder threading problems such as threading very large proteins or very complex protein.

· Related Works:

YADGARI, J., AMIR, A., AND UNGER, R. 1998. Genetic algorithms for protein threading. In Proceedings of the 6th international Conference on intelligent Systems For Molecular Biology J. I. Glasgow, T. G. Littlejohn, F. Major, R. H. Lathrop, D. Sankoff, and C. Sensen, Eds. AAAI Press, 193-202.
YADGARI, J., AMIR, A., AND UNGER, R. 2001. Genetic threading. Constraints 6, 271-292.
YANEV, N., AND ANDONOY, R. 2003. Solving protein threading problem in parallel. In Proceedings Workshop on High Performance Computational Biology held in conjunction with 17th International Parallel and Distributed Processing Symposium, Nice, France, IEEE Computer Society Press. 
· Later reference to paper by others: N/A

[Jones 1999]

This paper addresses a new protein fold recognition method using a neural network. Previous work by others has made some progress on this problem but three problems with fold recognition methods probably contribute to their lack of use: their slowness, the requirement for human intervention to interpret the results and the inaccuracy of sequence-structure alignments produced. One the three problems, the lack of automation in fold recognition process is perhaps the biggest problem in the application of threading methods to genomic sequence analysis. The authors of this paper are attempting to solve the problem of human intervention in the prediction process in particular.

This paper presents a new method for fold recognition, which can be divided into three stages: alignment of sequences, calculation of pair potential and salvation terms and finally, evaluation of the alignment using a neural network.

The authors implement the GenTHREADER Protocol and GenTHREADER program. This method has been applied to the genome of Mycoplasma genitalium, and analysis of the results shows that as many as 46% of the proteins derived from the predicted protein coding regions have a significant relationship to a protein of known structure. In some cases, however, only one domain of the protein can be predicted, giving a total coverage of 30% when calculated as a fraction of the number of amino acid residues in the whole proteome. 

The authors claim that the speed of this method, along with its sensitivity and low false-positive rate makes it ideal for automatically predicting the structure of all the proteins in a translated bacterial genome (proteome).

In terms of developing the method further, the authors claim that this approach can easily be extended to take into account any number of input parameters, and so other sources of sequence-structure information could easily be taken account of.     

· Related Works:

ALTSCHUL, S.E., GISH, W., MILLER, W., MYERS, E.W. AND LIPMAN, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410.

JONES, D.T., TAYLOR, W.R. AND THORNTON, J.M. 1992. A new approach to protein fold recognition. Nature 358, 86-89.

· Later reference to paper by others:

MCGUFFIN, L.J. AND JONES, D.T. 2003. Improvement of the GenTHREADER method for genomic fold recognition. Bioinformatics 19, 874-881. 

MCGUFFIN, L.J., STREET, S.A., BRYSON, K., SORENSEN, S., AND JONES, D.T. 2004. The genomic threading database: a comprehensive resource for structural annotations of the genomes from key organisms, Nucleic Acids Research 32, 196-199.

XU, J. 2005. Fold recognition by predicted alignment accuracy. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2, 2, 157-165.
[Lathrop 1994]
This paper addresses the problem of using amino acid interaction preferences (e.g., contact potentials, or potentials of mean force) to align (“thread”) a protein sequence to a known structural motif. 

The previous research is insufficient to observe that the problem’s search space is exponentially large, and some approaches do not reflect interaction preferences between amino acids from the sequence to be threaded.

This paper provides a theoretical basis for understanding algorithms currently in use, and indicates that computational strategies from other NP-complete problems may be useful for predictive algorithms.

The author of this paper identifies the two critical conditions governing the computational complexity of protein threading: (1) variable-length gaps are admitted into the alignment, and (2) interactions between amino acids from the sequence are admitted into the score function. The author proves that if both these conditions are allowed, then the protein threading decision problem is NP-complete, and the related problem of finding the globally optimal protein threading is NP-hard.

· Related Works:

ORENGO, C.A. AND MARKS, J. 1992. Protein Engineering 5, 313-321.

OUZOUNIS, C., SANDER, C., SCHARF, M. AND SCHNEIDER, R. 1993. J. Mol. Biol. 232, 805-825.

· Later reference to paper by others:

EIDHAMMER, I., JONASSEN, I. AND TAYLOR, W.R. 2000. Structure comparison and structure patterns. Journal of Computational Biology 7, 5, 685-716.

HOFACKER, I.L. 2004. Alignment of RNA base pairing probability matrices. Bioinformatics 20, 14, 2222-2227.

[Liang and Wong 2001]
This paper addresses the problem of protein folding simulations using evolutionary Monte Carlo (EMC). Previous research, such as traditional Monte Carlo and molecular dynamics simulations tend to get trapped in local minima, so the native structure cannot be located, and the thermodynamic quantities cannot be estimated accurately, the authors in this paper attempt to alleviate this difficulty in two directions. One direction is to search for the lowest potential energy conformation with powerful optimization techniques such as Monte Carlo with minimization, simulated annealing, and genetic algorithms. The other direction is to sample the phase space with more efficient samplers, such as multicanonical, entropic sampling, parallel tempering, simulated tempering, chain growth algorithms, and Metropolis algorithms with long range moves. 

In this paper, the authors demonstrate that EMC can be applied successfully to simulations of protein folding on simple lattice models, and to finding the ground state of a protein. 

The authors claim that in all cases, EMC is faster than the genetic algorithm and the conventional Metropolis Monte Carlo, and in several cases it finds new lower energy states. The authors also propose one method for the use of secondary structure in protein folding and the numerical results show that it is drastically superior to other methods in finding the ground state of a protein. But in this paper, the authors just have considered only 2D HP models, and they claim that the extension to 3D HP and real protein models is straightforward.

Finally, the authors claim that the further work is how to design a more efficient crossover operator for a long sequence. The crossover operators used in this paper are effective for a sequence of short and moderate length, but are less effective for a long sequence due to a low acceptance probability.

· Related Works:

RAMAKRISHNAN, R., RAMACHANDRAN, B. AND PEKNY, J. F.1997. J. Chem. Phys. 106, 2418.

DEUTSCH, J. M.1997. J. Chem. Phys. 106, 8849.
· Later reference to paper by others:

SHMYGELSKA, A. AND HOOS, H.H. 2005. An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics. 

[Nguyen et al. 2002]

This paper addresses a parallel hybrid genetic algorithm for solving the sum-of-pairs multiple protein sequence alignment. 

It is well known that the sum-of-pairs multiple sequence alignment problem can be exactly solved by the dynamic programming algorithm. However, this algorithm requires a running time which grows exponentially in proportion to the size of the problem. The majority of multiple sequence alignment heuristics is now carried out using the progressive approach (e.g. CLUSTALW, MULTAL, T-COFFEE), however, its main disadvantage is the local minimum problem. This paper presents a new GA-based method for more efficient multiple protein sequence alignment.

In this paper, a new chromosome representation and its corresponding genetic operators have been proposed. A multi-population GENITOR-type GA is combined with local search heuristics. It is then extended to run in parallel on a multiprocessor system for speeding up. 

The authors claim that experimental results of benchmarks from the BAliBASE show that the proposed method is superior to MSA, OMA and SAGS methods with regard to quality of solution and running time. It can be used for finding multiple sequence alignment as well as testing cost functions. 

The authors claim that there are several issues for future work. First, they plan to find a cheaper way to generating the initial population. Second, they want to extend the method to run in parallel on a network of computers (e.g. a cluster system) instead of a single multiprocessor system. Third, they want to find a more appropriate cost function for their method. 

· Related work:

Higgins, D. G. and Taylor, W. R. 2000. Multiple sequence alignment, Protein Structure Prediction Methods and Protocols, Humana Press, 1-18.

Horng, J. T., Lin, C. M., Liu, B. J., and Kao, C. Y.2000. Using genetic algorithm to solve multiple sequence alignments, Proc. of GECCO-2000, 883-890.
· Later reference to paper by others:

AKUTSU, T. 2003. Optimization problems and metaheuristics in bioinformatics. In Proceedings of the Fifth Metaheuristics International Conference. 

NGUYEN, H.D., YAMAMORI, K., YOSHIHARA, I AND YASUNAQA, M. 2003. Improved GA-based method for multiple protein sequence alignment. In Proceedings of the 2003 Congress on Evolutionary Computation. 

[Osmera et al. 2003]
This paper addresses a complex evolutionary structure based on the knowledge of evolution with the help of biology, informatics and physics. 

Previous research using evolutionary algorithm for the Scheduling Problem (SP) has only studied the static SP, few evolutionary algorithms have been applied to the Dynamic Scheduling Problem (DSP), the authors here implemented hybrid and parallel genetic algorithms (GAS) for solving the dynamic SP. The adaptive significance of GAs with sexual reproduction and an artificial immune system is presented in this paper.

The authors claim that from the experimental session, it can be concluded that modified standard Gas with two sub-population can solve the SP (or DSP) problems much better than classical versions of GAs, but do not explain what they mean by “much better”.

· Related Works:

DAVIS, L.1985. Job shop scheduling with genetic algorithms. International conference ICGA’ 85, 132-138.

COELLO, C.A. AND CORTES, N.C. 2002. A parallel implementation of an artificial immune system to handle constrain in genetic algorithms. WCCI 2002, Hawai, 819-824.

· Later reference to paper by others: N/A

[Raval et al. 2002]
This paper addresses the problem of protein fold and superfamily classification using a Bayesian network approach. The Bayesian network approach is a framework which combines graphical representation and probability theory, which includes, as a special case, hidden Markov models. Previous researches have been shown potential for addressing such problem.

In this paper a novel implementation of a Bayesian network which simultaneously learns amino acid sequence, secondary structure and residue accessibility for proteins of known three-dimensional structure has been described. The authors claim that training and validation data have been derived for a number of protein superfamilies from the Structural Classification of Proteins (SCOP) database.

The authors claim that the cross validation experiments using Bayesian classification demonstrate that the Bayesian network model which incorporates structural information outperforms a hidden Markov model trained on amino acid sequences alone, when tested with both real and predicted secondary structure and residue accessibilities. An improvement in classification performance was obtained by incorporating the confusion matrix for secondary structure and residue accessibility prediction into the Bayesian network model.

The authors claim that the future work is to examine various architectures for the incorporation of longer range interactions into the Bayesian network models, and the use of mean field potentials and a combination of Gibbs sampling and exact inference methods from the Bayesian network community to perform inference and parameter learning in these models.

· Related Works:

BIENKOWSKA, J., YU, L., ZARAKHOVICH, S., ROGERS, J.R.G. AND SMITH, T.F. 2000. Protein fold recognition by total alignment probability. Proteins 40, 451-462.

· Later reference to paper by others:

KARCHIN, R. CLINE, M, GUTFREUND, Y.M. AND KARPLUS, K. 2003. Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry. PROTEINS: Structure, Function and Genetics 51, 4, 504-514.
[Shi et al. 2004]
This paper addresses the feature selection problem in the context of multi-class protein fold recognition. In pattern recognition terminology, PFR is a multi-class classification problem to be solved by employing feature analysis and pattern classification techniques. This paper reformulates PFR into a multi-objective optimization problem and proposes a Multi-Objective Feature Analysis and Selection Algorithm. 

The authors generalize the wrapper method, and formulate the feature subset selection problem into a three-objective optimization problem similar to an earlier study.

The authors of this paper propose a Multi-Objective Feature Analysis and Selection Algorithm (MOFASA). The authors claim that MOFASA yields higher accuracy on both cross validation and testing data sets based on experiments on the Structural Classification of Protein data set. The authors claim that experiment results indicate that MOFASA is capable of achieving comparable performances to the existing results. The future work is to consider a more complicated situation, such as 600 fold recognition and also study an ensemble of different classifiers to improve the prediction accuracy.

· Related Works:

KOHAVI, R. AND JOHN, G.H. 1997. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324.

DEB, K. AND REDDY, A.R. 2003. Classification of two-class cancer data reliably using evolutionary algorithms. Technical Report 2003001, Kanpur Genetic Algorithm Lab, India Institute of Technology, Kanpur, February 2003.
· Later reference to paper by others:

MARSOLO, K. AND PARTHASARATHY, S. 2005. A multi-level approach to SCOP fold recognition. In Proceedings of fifth IEEE Symposium on Bioinformatics and Bioengineering, 57-64. 

[Taylor and Jonassen 2004]
This paper addresses the problem of evaluating the register of a sequence on a structure based on the matching of structural patterns against a library derived from the protein structure databank.

In this paper, a method (SPREK) was developed for the evaluation of protein models based on residue packing interactions. This method is described to evaluate the register of a sequence on a structure based on the matching of structural patterns against a library derived from the protein structure databank. The computer program that implements the method is called SPREK for Sequence-structure Pattern-matching by Residue Environment Comparison.

The authors claim that the performance of SPREK on the decoy models was equivalent to those obtained with more complex approaches. Compared to previous methods, the authors claim that their approach is very straightforward. There are no large tables of potentials or any large weight matrices. Despite its simplicity, their method does not discard structural information as occurs in the majority of methods that consider only pairwise residue interactions. The authors maintain a description of the structure environment around a residue, including the sequential order of the residues in the environment and their secondary structure state. A major advantage of their method is its ability to operate using only the α-carbon atom positions.

The authors claim that the future work is to explore further directions, both in relation to the pattern-matching algorithm and to the composition of the structure pattern library. Some potential applications are also outlined such as Meta-server, Threading and Ab Initio application. 

· Related Works:

LIN, K., MAY, A.C. AND TAYLOR W.R. 2002. Threading using neural networks(TUNE): the measure of protein sequence-structure compatibility. Bioinformatics 18, 1350-1357.

PETERSEN, K, AND TAYLOR, W.R. 2003. Modelling zinc-bingding proteins with GADGET: Genetic algorithms and distance geometry for exploring topology. J. Mol. Biol. 325, 1039-1059.
· Later reference to paper by others:

MAYEWSKI, S. 2004. A multibody, whole-residue potential for protein structures, with testing by Monte Carlo simulated annealing. PROTEINS: Structure, Function, and Bioinformatics 59, 2, 6152-169.

TAYLOR, W.R., LIN, K., FRATERNALI, F. AND JONASSEN, I. 2006. PROTEINS: Structure, Function, and Bioinformatics 64, 3, 601-614. 

[Thomas and Amato 2004]

This paper addresses a new computational technique for studying protein folding that is based on probabilistic roadmap methods for motion planning. The authors claim that their technique yields an approximate map of a protein’s potential energy landscape that contains thousands of feasible folding pathways, and they had validated their method against known experimental results. Other simulation techniques, such as molecular dynamics or Monte Carlo methods, require many orders of magnitude more time to produce a single, partial, trajectory.

In this paper, the authors report their experiences parallelizing their method using STAPL (the Standard Template Adaptive Parallel Library), that is being developed in the Parasol Lab at Texas A&M. They demonstrate how STAPL enables portable efficiency across multiple platforms without user code modification. In the end, they show performance gains on two systems: a dedicated Linux cluster and an extremely heterogeneous multi-user Linux cluster. 

Finally, the authors claim that their parallel protein folding algorithm can compute maps of a protein’s energy landscape containing thousands of folding pathway in a relatively short amount of time. With STAPL, they were able to easily parallelize their sequential code to obtain scalable speedups. In the future, they plan to study the performance gains using pGraph to store the roadmap. 

· Related Works:

KALE, L., SKEEL, R., BHANDARKAR, M., BRUNNER, R., GURSOY, A., KRAWETZ, N., PHILIPS, J., SHINOZAKI, A., VARADARAJAN, K. AND SCHULTEN, K. 1999. Namd2: Greater scalability for parallel molecular dynamics. J. Comp. Phys.151, 283–312.

LAZARIDIS, T. AND KARPLUS, M. 1999. Effective energy function for proteins in solution. Proteins 35, 133–152.
· Later reference to paper by others:

    PODESTA, K. 2004. Parallel Strategies for biocomputation. Ph. D. thesis, School of Computing, Dublin City University, Ireland.

[Unger 2004]
This paper addresses the problem of protein structure prediction and protein alignments by using genetic algorithms. It is widely recognized that one of the major obstacles in addressing this question is that the “standard” computational approaches are not powerful enough to search for the correct structure in the huge conformational space. Genetic algorithms, a cooperative computational method, have been successful in many difficult computational tasks. Thus it is not surprising that in recent years several studies were performed to explore the possibility of using genetic algorithms to address the protein structure prediction problem.

In this paper, a general framework of how genetic algorithms can be used for protein structure prediction is described. Using this framework, the significant studies that were published in recent years are discussed and compared. Applications of genetic algorithms to the related question of protein alignments are also mentioned. The rationale of why genetic algorithms are suitable for protein structure prediction is presented.

The author claims that GAs are efficient general search algorithms and as such are appropriate for any optimization problem, including problems related to protein folding. 

The author claims that to improve performance, some improvements might be made to GA methods. One obvious aspect is to improving the energy function. An interesting possibility to explore within the GA framework is to make a distinction between the fitness function and the energy function. In this way it might be possible to emphasize different aspects of the fitness function in different stages of folding. Another possibility is to introduce explicit “memory” into the emerging substructure, such that substructures that have been advantageous to the structures that harbored them will get more level of immunity form changes.

· Related Works:

PEDERSEN, J.T. AND MOULT, J. 1996. Curr Opin Struct Biol 6, 227.
LE GRAND, S.M. AND MERZ, K.M. 1994. The protein folding problem and tertiary structure prediction: the genetic algorithm and protein tertiary structure prediction. Birkhauser, Boston, 109.
 WILLETT, P. 1995. Trends Biotechnol 13, 516   

· Later reference to paper by others:

SANCHO, D AND REY, A. 2006. Assessment of protein folding potentials with an evolutionary method. Journal of Chemical Physics 125.

KOSKOWSKI, F. AND HARTKE, B. 2005. Towards protein folding with evolutionary techniques. Journal of Computational Chemistry 26, 11, 1169-1179.

[Wiese and Hendriks 2006]
This paper addresses the problem of RNA secondary structure prediction using a parallel evolutionary algorithm called P-RnaPredict. P-RnaPredict is a fully parallel implementation of a coarse-grained distributed EA for RNA secondary structure prediction, and it is based on RnaPredict, a serial RA for the same purpose which encodes RNA secondary structures in permutations and includes two stacking-energy-based thermodynamic models. 

In this paper, two sets of experiments are performed on 5 known structures from 3 RNA classes. The first determines the actual speedup, and the second evaluates the performance of P-RnaPredict through comparison to mfold. The authors state the results that P-RnaPredict was shown to possess good prediction accuracy, especially on shorter sequences and P-RnaPredict succeeds in predicting structures with higher true positive base pair counts and lower false positives than mfold on specific sequences.

The authors claim that future work on P-RnaPredict will focus on improving its prediction accuracy through the application of more sophisticated thermodynamic models in the fitness function, and the modeling of non-canonical base pairs.

· Related work:

WIESE, K. C. AND HENDRIKS, A. 2006.Comparison of P-RnaPredict and mfold algorithms for RNA secondary structure prediction. Bioinformatics 22, 8, 934–942.
WIESE, K. C. AND GLEN, E. 2003.A permutation-based genetic algorithm for the RNA folding problem: a critical look at selection strategies, crossover operators, and representation issues,” BioSystems – Special Issue on Computational Intelligence in Bioinformatics 72, 29–41.
· Later reference to paper by others: N/A

[Xu 2005]

This paper addresses the problem of protein threading using a Support Vector Machine (SVM) regression approach. The traditional method for template selection is called Z-score [Bryant and Altschul 1995]. However, the calculation of Z-score is time-consuming and not suitable for genome-scale structure prediction, and Z-score are also hard to interpret when the threading scoring function is the weighted sum of several energy items of different physical meanings. Several programs such as GenTHREADER [Jones 1999] and PROSPECT-I [Xu et al 2002] use neural network to rank the template. The neural network method treats the template selection problem as a classification problem. The author of this paper claims that treating the template selection problem as a classification problem is not good enough for three-dimensional structure prediction.

This paper presents a Support Vector Machine (SVM) regression approach to directly predict the alignment accuracy of a sequence-template alignment. The authors implemented experiments on a large-scale benchmark using their Support Vector Machine (SVM) regression approach.

The authors claim that experimental results show that SVM regression method has much better performance in both sensitivity and specificity than the composition-corrected Z-score method, and SVM regression method also performs better than SVM classification method. In addition, SVM regression method enables the threading program to run faster than the composition-corrected Z-score method. 

The author claims that the future work is to extend the SVM regression method to predict other quality indices such as MaxSub score, which is used as the evaluation criteria of CAFASP3. 

· Related Works:

BRYANT, S.H. AND ALTSCHUL, S.F. 1995. Statistics of sequence-structure threading, Current Opinions in Structural Biology 5, 236-244.

JONES, D.T. 1999. GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J. Molecular Biology 287, 797-815.

XU, Y., XU, D. AND OLMAN, V. 2002. A practical method for interpretation of threading scores: an application of neural networks,” Bioinformatics 12, 159-177.

· Later reference to paper by others:

ISLAM, R. AND NGOM, A. 2005. Parallel evolution strategy for protein threading. In Proceedings of the 25th IEEE International Conference of the Chilean Computer Science Society, Valdivia, Chile, November, Chilean Computer Science Society.

    JIAO, F. XU, J, YU, L. AND SCHUURMANNS, D. 2006. Protein fold recognition using gradient boost algorithm. In Proceedings csb2006.

[Yadgari et al. 2001]
This paper addresses the genetic algorithm paradigm, an efficient search method based on evolutionary idea, is used to perform sequence to structure alignments.

The sequence/structure pairs in this paper were taken from a database of structural alignments where the sequence of one protein was threaded through the structure of the other. 

In this paper, a proper representation has been discussed in which genetic operators can be effectively implemented. The authors claim that the algorithm performance is tested for a set of six sequence/structure pairs. The effects of changing operators and parameters are explored and analyzed. The data they have presented indicate that the Genetic Algorithms method is a feasible and efficient approach to threading.

The authors claim that regarding the specific questions they have studied, genetic algorithms threading is quite robust and is not overly dependent on the particular selection of parameter or operators. 

The authors claim that the future work is to implement the genetic algorithm in a complete threading package, with all the necessary components and to test it in a realistic prediction setup.

· Related Works:

GODZIK, A. 1998. http://cape6.scripps.edu/adam/service/alignbase.html.
· Later reference to paper by others:

ISLAM, R. AND NGOM, A. 2005. Parallel evolution strategy for protein threading. In Proceedings of the 25th IEEE International Conference of the Chilean Computer Science Society, Valdivia, Chile, November, Chilean Computer Science Society.

[Yanev and Andonoy 2003]
This paper addresses the problem of a network flow formulation for protein threading. The problem is consisted of testing whether or not a target sequence query is likely to fold into a 3D template structure core by searching for an alignment which minimizes a suitable score function. 

This paper is based on results described in details in a previous research report. In this paper the authors use the power of parallel computers in order to speed up the computation.

The main contributions of this paper are as follows:

a. Protein threading is formulated as a network flow model and has proved to be equivalent to the shortest path problem on a graph with a particular structure.

b. Three MIP models are proposed, analyzed and compared to each either, and with the popular Lathrop_Smith’s (b&b) algorithm.

c. The MIP polytope posseses an extremely useful property: in all but very few cases the solution is given by solving the LP relaxed problem.

d. A divide and conquer strategy is proposed for the formulated SPP problem.

e. Several parallel schemes have been implemented and analyzed in order to improve the efficiency. 

The authors claim that the preliminary results of parallel code are extremely encouraging and huge problem instances have been solved in a reasonable time but do not explain what they mean by “encourage-huge” and “reasonable”. The authors claim that they have demonstrated that a marriage of mathematical programming with parallel programming theory and algorithms can be a valuable tool for attacking optimization problems now arising in computational biology.

· Related Works:

YANEV, N. AND ANDONOV, R. 2002.The protein threading problem is in P?, RR INRIA, No 4577, October 2002 (http://www.inria.fr/rrrt/rr-4577.html).

· Later reference to paper by others:

ISLAM, R. AND NGOM, A. 2005. Parallel evolution strategy for protein threading. In Proceedings of the 25th IEEE International Conference of the Chilean Computer Science Society, Valdivia, Chile, November, Chilean Computer Science Society.

[Yap et al. 1998]
This paper addresses the problem of parallel computational methods for analyzing biological sequences. The authors present two parallel computational methods for analyzing biological sequences. The first method is used to retrieve sequences that are homologous to a query sequence. The second method is used to align a number of homologous sequences with each other.

The authors claim that these two parallel computational methods were implemented and evaluated on an Intel iPSC/860 parallel computer. The authors claim that the resulting performance demonstrates that parallel computational methods can significantly reduce the computational time needed to analyze the sequences contained in large database but do not explain what they mean by “significantly”. 

The authors claim that parallel computational methods allow researchers to analyze biological sequence at a much higher speed than the sequential methods, and also make it possible for scientists to analyze problems that were previously considered too large. 

· Related Works:

YAP, T.K., FRIEDER, O. AND MARTINO, R.L.1996. Parallel computation in biomedicine: genetic and protein sequence analysis. Handbook of Parallel and Distributing Computing, A.Y. Zomaya, ed., 1071-1096.
YAP, T.K., FRIEDER, O. AND MARTINO, R.L. 1996. High Performance Computational Methods for Biological Sequence Analysis. Kluwer Academic Publishers.
· Later reference to paper by others:

ALURU, S, FUTAMURA, N AND MEHROTRA, K. 2003. Parallel biological sequence comparison using prefix computations. Journal of Parallel and Distributed Computing 63, 3, 264-272. 
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