
How to build language

processors in a pure functional

programming language

Recognizers – for terminals

term wd (tok:toks) = [toks], if tok = wd

= [], otherwise

term x [] = []

e.g.

term “one” [“one”,“two”,“three”]

=> [[“two”,”three”]]

term “two” [“one”,“two”,“three”] => []

Now one = term “one”

two = term “two”

plus = term “+” etc

Recognizers – alternatives

(p $orelse q) toks = p toks ++ q toks

e.g.

one $orelse two [“one”,”four”] => [[“four”]]

one $orelse two [“two”,”six”] => [[“six”]]

one $orelse two [“three”,”six”] => []

num = one $orelse two $orelse three …

Recognizers – sequence

(p $then q) toks = concat (map p (q toks))

e.g.

(one $then two) [“one”,”two”,”three”] => [[“three”]]

(one $then two) [“one”,”six”,”four”] => []

num $then num [“one”,”two”,”three”] => [[“three”]]

Recognizers – complex

add_seq = num $orelse (num $then plus $then add_seq)

e.g.

add_seq [“one”,”+”,”three”,”+”,“six”]

=> [[“+”,”three”,“+”,”six”],

[“+”,”six”],

[]]

add_seq [“plus”,”six”,”four”] => []

Interpreters – for terminals

term (wd,val) (tok:toks) = [(val,toks)], if tok = wd

= [], otherwise

term x [] = []

e.g.

term (“one”,1) [“one”,“two”,“three”]

=> [(1,[“two”,”three”]])

Now one = term (“one”,1)

two = term (“two”,2)

plus = term (“+”,(+)) etc

Interpreters – alternatives

(p $orelse q) toks = p toks ++ q toks

e.g.

one $orelse two [“one”,”four”] => [(1,[“four”])]

one $orelse two [“two”,”six”] => [(2,[“six”])]

one $orelse two [“three”,”six”] => []

num = one $orelse two $orelse three …

Interpreters – sequence

(p1 $then p2) toks

= [((v1,v2),t2) | (v1,t1) <- p1 toks;

(v2,t2) <- p2 t1]

e.g.

(one $then two) [“one”,”two”,”three”]

=> [((1,2),[“three”])]

(one $then plus $then two)

[“one”,”plus”,”two”.”three”]

=> [(1,((+),2)),[“three”])]

Interpreters – complex

add_seq

= num

$orelse

((num $then plus $then add_seq) $apply_rule app_op)

(p $applyrule f) inp = [(f v, r) | (v, r) <- p inp]

app_op (v1, (op, v2)) = op v1 v

e.g

add_seq [“one”,”+”,”three”,”+”,“six”]

=> [(1,[“+”,”three”,“+”,”six”]),

(4,[“+”,”six”]),

(10,[])]

