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The Problem

− Knowledge of parsing techniques and semantic 
evaluation methods are required in order for software 

developers to create natural language (NL) processors, 
thereby restricting the creation of NL interfaces to many 

applications.

− One solution is to allow language processors to be 

created as executable specifications of grammars 
annotated with semantic rules. The most modular 

approach is to use top-down parsing.
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The Problem (cont.)
However, naïve algorithms for top-down parsing:

1. Do not non-terminate for context-free syntax that includes direct/ 
indirect left-recursion

− addressed by Frost, Hafiz and Callaghan (PADL 2008)

2. Require exponential time and space for ambiguous grammars 
e.g., grammars for NL

3. Do not provide support for general attribute relationships 
(including the use, by a parser for construct p, of inherited 
attributes associated with syntactic constructs “to the right” of p 

on the right hand side of syntactic rules.

4. 2 and 3 are the primary focus of this paper
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Importance of the Problem

− Accommodating ambiguity is essential as natural 
languages have ambiguous grammars.

− Transforming a left-recursive grammar to a weakly 
equivalent non-left-recursive form can introduce 
loss of parses and difficulty in specifying 
semantics.

− Declarative semantics with arbitrary attribute 
dependencies provide unrestricted 
accommodation of NL semantics. For example, 
Montague style compositional semantics.
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Importance of the Problem (cont.)

− Language developers can build executable 
specifications of language processors without 
worrying about syntax-semantics evaluation 
methods and order.

− Modularity allows individual parts of the 
specifications to be constructed and tested 
separately.

− Polynomial time and space are required for 
parsing highly ambiguous languages, such as 
NL, in real time.
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An example of a general CFG
start (Sstart (Sstart (Sstart (S0000)  ::= tree(T)  ::= tree(T)  ::= tree(T)  ::= tree(T0000))))
tree(Ttree(Ttree(Ttree(T0000)    ::= tree(T)    ::= tree(T)    ::= tree(T)    ::= tree(T1111) tree(T) tree(T) tree(T) tree(T2222) num(N) num(N) num(N) num(N1111))))

|   num(N|   num(N|   num(N|   num(N2222))))
num(Nnum(Nnum(Nnum(N0000)   ::= 1 )   ::= 1 )   ::= 1 )   ::= 1 

|   2 |   2 |   2 |   2 ……………………

___tree______tree______tree______tree___
/         |        /         |        /         |        /         |        \\\\

tree    tree    tree    tree    treetreetreetree numnumnumnum
/         /    |   /         /    |   /         /    |   /         /    |   \\\\ \\\\

num tree num tree num tree num tree treetreetreetree num  num  num  num  2222
|        |     |      |        |     |      |        |     |      |        |     |      \\\\
1111 num num num num numnumnumnum 3

|      |          |      |          |      |          |      |          
4444 5555

___tree______tree______tree______tree___
/         |        /         |        /         |        /         |        \\\\

tree     tree     tree     tree     treetreetreetree num      num      num      num      
/     |   /     |   /     |   /     |   \\\\ \\\\ \\\\

tree tree num num     tree tree num num     tree tree num num     tree tree num num     2222
|       |       |      ||       |       |      ||       |       |      ||       |       |      |

num  num  num  num  num  num  num  num  5555 3333
|       |     |       |     |       |     |       |     
1111 4444

This left-recursive and ambiguous context-free syntax generates two 
ambiguous trees when applied to the input 1 4 5 3 2.
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An example problem

___tree______tree______tree______tree___
/         |        /         |        /         |        /         |        \\\\

tree    tree    tree    tree    treetreetreetree numnumnumnum
/         /    |   /         /    |   /         /    |   /         /    |   \\\\ \\\\

num tree num tree num tree num tree treetreetreetree num   num   num   num   5555
|        |     |      |        |     |      |        |     |      |        |     |      \\\\
5555 num num num num numnumnumnum 5

|      |         |      |         |      |         |      |         
5555 5555

___tree______tree______tree______tree___
/         |        /         |        /         |        /         |        \\\\

tree     tree     tree     tree     treetreetreetree num      num      num      num      
/     |   /     |   /     |   /     |   \\\\ \\\\ \\\\

tree tree num num     tree tree num num     tree tree num num     tree tree num num     5555
|       |       |      ||       |       |      ||       |       |      ||       |       |      |

num  num  num  num  num  num  num  num  5555 5555
|       |     |       |     |       |     |       |     
5555 5555

Suppose that we want to replace all leaves of the trees with the max 
value of the input, giving:

One approach is to specify this problem as a language processing
problem, and to define the solution using an executable attribute 
grammar.
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An executable specification
start (S0)  ::= tree(T0)

{ RepVal.T0↓ = MaxVal.T0↑ }

tree(T0)    ::= tree(T1) tree(T2) num(N1)

{ MaxVal.T0↑ = max (MaxVal.T1↑,     

MaxVal.T2↑,

MaxVal.N1↑)

, RepVal.T1↓ = RepVal.T0↓

, RepVal.T2↓ = RepVal.T0↓

, RepVal.N1↓ = RepVal.T0↓

}

|   num(N2)

num(N0)  ::= 1{MaxVal.N0↑= 1}|2{MaxVal.N0↑=2}.. 

↓ = attributes propagating downwards i.e. inherited attributes
↑ = attributes propagating upwards i.e. synthesized attributes

Our objective is to have a program that is isomorphic with this grammar, i.e. an 

executable specification.
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Our Solution

− We have constructed the first top-down parsing algorithm that 
supports executable specifications of fully general CFGs annotated 
with fully-general declarative semantic rules in polynomial time and 
space w.r.t the length of input.

− We have implemented the algorithm as a set of non-strict, purely 
functional combinators, i.e. higher-order functions:

*> and <|> for sequencing and alternating rules

rule_i and rule_s for synthesized and inherited rules

parser, nt for complete AG rules

memoize for  converting parsers to memoized versions.
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Solution (cont.)
Our parser combinators are functions that map the current 

start position to a set of end positions, where each end is 

mapped to a set of syntax trees. For example:

data Atts = MaxVal {getAVAL :: Int} 

| Binary_OP {getB_OP :: (Int -> Int -> Int)} ...

type Start/End = (Int,[(Instance, [Atts])])

data PTree v   = Leaf (v,Instance) 

| Branch [PTree v]

| SubNode ((Label, Instance), (Start,End))
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Solution (cont.)
Memoization allows use of previously-computed results:

− The memo-table is threaded through parser executions using a state 
monad

type MemoTable = [(Label,[(Start,  

(Context,Result))])]

type Result    = [((Start, End),[PTree Label])]

− lookup is performed, if no previous application, a new result is
constructed and the memo-table is updated.

− groups local syntactic ambiguities and common semantic values 
under the current position in a newly-formed result.

− parsers pass up a reference/pointer of their memo-table entry to 
upper-level parsers, instead of the complete result.
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Solution: General Syntax 

The basic syntax analysis technique is based on Frost, 
Hafiz and Callaghan (2008):

− To accommodate direct left-recursion, a “left-recursive count” is 
used for the number of times a parser has been applied to an input 
position j. This count is increased on recursive descent, and the 
parser is curtailed whenever the “left-recursive count” of parser at j 
exceeds the number of remaining input tokens.

− To accommodate indirect left-recursion, a parser's result is paired 
with a set of curtailed non-terminals at j within the current parse 
path, which is used to determine the context in which the result
was  constructed at j – if the new context strictly subsumes the 
context for a saved result, then a new result is computed, 
otherwise the saved result is used.
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We have now extended the set of combinators 

to accommodate fully general semantics:

− Pure, non-strict, combinators simplified the accommodation 
of arbitrary dependencies including “inheritance from the 
right”

− Expressions are formed from an environment of potentially 
unevaluated attributes returned by the current parser, its 
predecessor, successors or siblings

Solution: General Semantics 



14

− Synthesized attributes are associated with parent nodes, and 
inherited attributes are associated with their child nodes

− To maintain the flow of attributes, in addition to being executed on 
the current Start and Context, a parser must pass down its unique 
id and a list of its own inherited attributes so that they can be 
used when executing the succeeding parsers' semantic 
definitions.

Solution: General Semantics (cont.) 

pm pn
po

pm’s 
inh & syn

atts

pn’s
inh & syn

atts

po’s
inh & syn

atts

own inh atts

own syn
atts

For the parentFor the parentFor the parentFor the parent
node pnode pnode pnode piiii pi

pm pn popm’s 
inh & syn

atts

pi’s 
inh & syn

atts

po’s
inh & syn

atts

own 
syn & inh

atts

For a childFor a childFor a childFor a child
node node node node ppppnnnn

pi
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Haskell Combinators
Our combinators are implemented in Haskell.

A parser's alternative rules are formed with the combinator <|>.

− Accommodates alternative syntax with a list of semantic rules. 

− Alternatives p and q are applied to the current position and the
current context. The id and inherited attributes of the calling parser 
are passed down to the parsers for p and q. All results from p are 
passed to q (thereby avoiding duplication of work) and then their 
results merged together .

(<|>) :: NTType -> NTType -> NTType

type M a = Start -> Context -> StateMonad a

type ParseResult = (Context, Result)

type NTType = Id -> InsAttVals -> M ParseResult



16

Haskell Combinators (cont.)
Parsers are sequenced with the combinator *>

− In p*>q, p is first applied to the current start position and the current 
context. Then *> causes p to compute its inherited attribute from the 
surrounding environment.

− Next, q is applied to the set of ends returned by p. q also computes 
inherited attributes from the calling and p’s environment. 

(*>) :: SeqType -> SeqType -> SeqType, where :

type SemRule = (Instance,(InsAttVals, Id) -> InsAttVals)

type SeqType = Id -> InsAttVals -> [SemRule] -> Result 

-> M ParseResult
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Attribute computation rules are formed with a higher-order 
wrapper function parser, 
− maps the current parser's synthesized rules to all ending 

points of the syntactic result.
− causes each parser in the syntax rule to pass down their 

inherited attributes for future use.

parser :: SeqType -> [SemRule] -> Id ->  

InsAttVals -> M ParseResult

The higher-order function nt causes parsers to pass down their 
own identification and a list of inherited attributes 
− by applying the grouped expressions on a parser-provided 

environment that consists of the predecessor id's and 
surrounding parsers' synthesized and inherited attributes.

nt :: NTType -> Id -> SeqType

Arbitrary Dependencies in Semantics (cont.)
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Our Example Executable Specification in Haskell

The Executable representation of the example attribute grammar specification of slide #8 
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The Result of Executing the Specification
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Time Complexity  w.r.t #input 

For non-left recursive grammars, parsing complexity w.r.t. length of the input, 

n, is O(n3), and for left recursive grammars, the complexity is O(n4)

When semantic evaluation is taken into account, the time complexity may

increase depending on the complexities of the semantic actions.
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Space Complexity w.r.t #input n

− Our compact representation of syntax trees 
allows the parser to save results as a list of one-
level-depth branches with attribute values 
attached to pointing sub-nodes. 

− In the memo-table, for each parser's n input 
positions, we can store n branches 
corresponding to n end positions. For a branch p 
*> q, there are n possible ambiguities. 

− Hence, we need O(n3) space in the worst-case 
w.r.t. the length of the input. 
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An example application
A simple domain-specific NL interface:

− The Attribute Grammar is a fully-general CFG with 15 non-
terminals and 32 AG rules.

− All syntax rules are associated with semantic rules which 
implement a subset of the set-theoretic version of Montague 
semantics extracted from Frost and Fortier (2007).

− We define a dictionary/ knowledge-base for syntactic categories 
and their meanings: 15 syntactic categories and 130 words.
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An example application

dictionary =

("moons",        Cnoun,     [NOUNCLA_VAL set_of_moon]),

("atmospheric",  Adj,       [ADJ_VAL    set_of_atmospheric]),

("exist",        Intransvb, [VERBPH_VAL  set_of_things]),

("deimos",       Pnoun,     [TERMPH_VAL (test_wrt 20)]),

("person",       Cnoun, meaning_of nouncla "man or woman"), 

("discoverer”,   Cnoun, meaning_of nouncla

"person who discovered something"),
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An example application(cont.)

Example executable specifications  of production rules:

jointermph = memoize Jointermph

parser (nt jointermph S1 *> nt termphjoin S2 *> nt jointermph S3)

[rule_s TERMPH_VAL OF LHS ISEQUALTO 

apply_join [synthesized TERMPH_VAL OF S1,

synthesized TERMPHJOIN_VAL OF S2,

synthesized TERMPH_VAL OF S3    ]]

<|>

parser (nt termph S4)

[rule_s TERMPH_VAL OF LHS 

ISEQUALTO copy [synthesized TERMPH_VAL OF S4]]
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An example application (cont.)

Answers hundreds of thousands of questions, e.g.

which moons that were discovered by hall 
orbit mars

⇒ “phobos and deimos”

every planet is orbited by a moon

⇒ “false”

how many moons were discovered by hall or kuiper

⇒ “four”

did hall discover deimos or phobos and miranda

⇒ “no and yes” ** note: ambiguous results
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Related Work
− Kuno’s (1965) “depth-imposing” algorithm, Nederhof and Koster’s

“cancellation- parsing” for DCG’s (1993), Lickman’s use of “fixed-points”
(1995), and Johnson’s integration of memoization with continuation-
passing-style (1995), all terminate for left-recursion but have exponential 
complexity.

− Norvig (1991) and Frost’s (1994) techniques for automatic memoization
in parsing. 

− Hutton and Meijer (1995) Monadic parser combinators.

− Swierstra et al. (1991 and 1998) and De Moor et al. (2000)  “first-class 
attributes”. JustAdd (Ekman, 2006) is an compiler-compiler AG system 
for Java.

− Frost (2002) – an Attribute Grammar programming environment. Also, 
YAG (Mcroy et al., 2003) in which AGs are used to correct partially-
specified input.
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Comparison with Related Work

– Our approach is directly executable and specifications do not need to 
be compiled

– Our top-down syntax-driven parsing strategy strictly preserves 
syntactic structures of general ambiguous CFGs

– Our approach accommodates fully declarative semantic with arbitrary 
dependencies for general syntax following original def. of AG

– Our memoization is specialized to perform extra tasks e.g. keeping 
track of non-terminals’ context information, merging syntactic 
ambiguity, mapping and grouping attributes etc.

– Our approach differs from other NL processors by being a one-pass 
parsing system that can return either compactly-represented parse 
trees annotated with attribute values or just a set of final answers, 
according to what is demanded by the application.
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Future Work
− Construct formal correctness proofs, and optimize the implementation 

w.r.t. grammar size.

− Use semantic rules to prune out non-sensible parses. 

− Model NL features that can be characterized by other grammar 
formalisms.

Project Website

X-SAIGA – Executable SpecifIcations of Grammars
cs.uwindsor.ca/~hafiz/proHome.html

A version of demo code can be found at:
http://cs.uwindsor.ca/~hafiz/fullAg.html


