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Abstract. Parser combinators are higher-order functions used to build
parsers as executable specifications of grammars. Some existing imple-
mentations are only able to handle limited ambiguity, some have expo-
nential time and/or space complexity for ambiguous input, most cannot
accommodate left-recursive grammars. This paper describes combina-
tors, implemented in Haskell, which overcome all of these limitations.
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1 Introduction

In functional programming, higher order functions called parser combinators can
be used to build basic parsers and to construct complex parsers for nonterminals
from other parsers. Parser combinators allow parsers to be defined in an embed-
ded style, in code which is similar in structure to the rules of the grammar. As
such, implementations can be thought of as executable specifications with all
of the associated advantages. In addition, parser combinators use a top-down
parsing strategy which facilitates modular piecewise construction and testing.

Parser combinators have been used extensively in the prototyping of compilers
and processors for domain-specific languages such as natural language interfaces
to databases, where complex and varied semantic actions are closely integrated
with syntactic processing. However, simple implementations have exponential
time complexity and inefficient representations of parse results for ambiguous
inputs. Their inability to handle left-recursion is a long-standing problem. These
shortcomings limit the use of parser combinators especially in applications with
large and complex grammars.

Various techniques have been developed by others to address some of these
shortcomings. However, none of that previous work has solved all of them.

The parser combinators that we present here are the first which can be used
to create executable specifications of ambiguous grammars with unconstrained
left-recursion, which execute in polynomial time, and which generate compact
polynomial-sized representations of the potentially exponential number of results
for highly ambiguous input.
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The combinators are based on an algorithm developed by Frost, Hafiz and
Callaghan (2007). That algorithm combines memoization with existing tech-
niques for dealing with left recursion. The memotables are modified to represent
the potentially exponential number of parse trees in a compact polynomial sized
representation using a technique derived from (Kay 1980) and (Tomita 1986). A
novel technique is used to accommodate indirect as well as direct left recursion.

This paper has three objectives: 1) To make the algorithm of Frost, Hafiz and
Callaghan known to a wider audience beyond the Computational Linguistics
community. In particular by the functional and logic programming communities
both of which have a long history of creating parsers as executable specifica-
tions (using parser combinators and Definite Clause Grammars respectively),
2) to introduce a library of parser combinators for immediate use by functional
programmers, and 3) to illustrate how a declarative language facilitates the incre-
mental implementation of a complex algorithm. Note that extension to include
semantics will be straightforward, and that this work can be seen as an important
step towards combinators that support general attribute grammars.

As example use of our combinators, consider the following ambiguous gram-
mar from Tomita (1986). The nonterminal s stands for sentence, np for noun-
phrase, vp for verbphrase, det for determiner, pp for prepositional phrase, and
prep for preposition. This grammar is left recursive in the rules for s and np.

s ::=np vp | s pp np ::=noun | det noun | np pp

PP ::= prep np vp ::= verb np

det ci= llall | "the" noun ::= ||i|| | ||man|| | "park" I Ilbatll
verb ::= "saw" prep ::= "in" | "with"

The Haskell code below defines a parser for the above grammar using our
combinators term, <+>, and *>.

data Label =S | ... | PREP

s = memoize S $ np *> vp <+> s *> pp

np = memoize NP  $ noun <+> det *> noun <+> np *> pp
pp = memoize PP  § prep *> np

vp = memoize VP $ verb *> np

det = memoize DET §$ term "a" <+> term "the"

noun = memoize NOUN $ term "i"<+>term "man"<+>term "park" <+> term "bat"
verb = memoize VERB $ term "saw"
prep = memoize PREP $ term "in" <+> term "with"

The next page shows the “prettyprinted” output when the parser function s
is applied to “1 saw a man in the park with a bat”. The compact represen-
tation corresponds to the several ways in which the whole input can be parsed
as a sentence, and the many ways in which subsequences of it can be parsed
as nounphrases etc. For example, the entry for NP shows that nounphrases were
identified starting at positions 1, 3, 6, and 9. Some of which were identified as
spanning positions 3 to 5, 8, and 11. Two were found spanning positions 3 to 11.
The first of which consists of a NP spanning 3 to 5 followed by a PP spanning 5
to 11. (We define a span from x to y as consuming terminals from x toy - 1.)
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NOUN [1 ->[2 ->[Leaf "i"]]
,4 >[5 ->[Leaf "man"]]
,7 =>[8 ->[Leaf "park"]]
,10->[11->[Leaf "bat"11]
DET [3 ->[4 ->[Leaf "a"]]
,6 =>[7 ->[Leaf "the"]]
,9 ->[10->[Leaf "a"l]1]
NP [1 ->[2 ->[SubNode NOUN (1,2)]]
,3 ->[5 ->[Branch [SubNode DET (3,4) , SubNode NOUN (4,5)]1]
,8 —->[Branch [SubNode NP (3,5) , SubNode PP (5,8)11
,11->[Branch [SubNode NP (3,5) , SubNode PP (5,11)]
,Branch [SubNode NP (3,8) , SubNode PP (8,11)111
,6 ->[8 ->[Branch [SubNode DET (6,7) , SubNode NOUN (7,8)]]
,11->[Branch [SubNode NP  (6,8) , SubNode PP  (8,11)]]]
,9 ->[11->[Branch [SubNode DET (9,10), SubNode NOUN (10,11)11]1]
PREP [5 ->[6 ->[Leaf "in"]]
,8 =>[9 ->[Leaf "with"]]]
PP [8 ->[11->[Branch [SubNode PREP (8,9), SubNode NP (9,11)11]
,6 ->[8 ->[Branch [SubNode PREP (5,6), SubNode NP (6,8)]]
,11->[Branch [SubNode PREP (5,6), SubNode NP (6,11)111]
VERB [2 ->[3 ->[Leaf "saw"]]]
VP [2 ->[5 ->[Branch [SubNode VERB (2,3), SubNode NP (3,5)]]
,8 —->[Branch [SubNode VERB (2,3), SubNode NP (3,8)]]
,11->[Branch [SubNode VERB (2,3), SubNode NP (3,11)]11]]
S [1 ->[5 ->[Branch [SubNode NP (1,2), SubNode VP (2,5)]1]
,8 ->[Branch [SubNode NP (1,2), SubNode VP (2,8)]
,Branch [SubNode S (1,5), SubNode PP (5,8)1]
,11->[Branch [SubNode NP (1,2), SubNode VP (2,11)]
,Branch [SubNode S (1,5), SubNode PP (5,11)]
,Branch [SubNode S (1,8), SubNode PP (8,11)111]

Parsers constructed with our combinators have O(n?) worst case time com-
plexity for non-left-recursive ambiguous grammars (where n is the length of the
input), and O(n?*) for left recursive ambiguous grammars. This compares well
with O(n?) limits on standard algorithms for CFGs such as Earley-style parsers
(Earley 1970). The increase to n? is due to expansion of the left recursive nonter-
minals in the grammar. Experimental evidence suggests that typical performance
is closer to O(n?), possibly because few subparsers are left recursive and hence
the O(n?®) term predominates. Experimental evaluation involved four natural-
language grammars from (Tomita 1986), four variants of an abstract highly-
ambiguous grammar, and a medium-size natural-language grammar with 5,226
rules. The potentially-exponential number of parse trees for highly-ambiguous
input are represented in polynomial space as in Tomita’s algorithm.

We begin with background material followed by a detailed description of the
Haskell implementation. Experimental results, related work, and conclusions are
given in sections 4, 5 and 6. Formal proofs of termination and complexity, and
the code of the initial Haskell implementation, are available at:

cs.uwindsor.ca/"richard/PUBLICATIONS/APPENDICES_HASKELL.html
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2 Background

2.1 Top Down Parsing and Memoization

Top-down parsers search for parses using a top-down expansion of the gram-
mar rules. Tokens are consumed from left to right. Inclusive choice is used to
accommodate ambiguity by expanding all alternative right-hand-sides of gram-
mar rules. Simple implementations do not terminate for left-recursive grammars,
and have exponential time complexity with respect to the length of the input
for non-left-recursive ambiguous grammars.

The problem of exponential time complexity in top-down parsers constructed
as sets of mutually-recursive functions has been solved by Norvig (1991). His
technique is similar to the use of dynamic programming and state sets in Ear-
ley’s algorithm (1970), and tables in the CYK algorithm of Cocke, Younger and
Kasami. The key idea is to store results of applying a parser p at position j in
a memotable and to reuse results whenever the same situation arises. It can be
implemented as a wrapper function memoize which can be applied selectively to
component parsers.

2.2 The Need for Left Recursion

Left-recursion can be avoided by transforming the grammar to a weakly equiv-
alent non-left-recursive form (i.e. to a grammar which derives the same set of
sentences, but does not generate the same set of parse trees). Such transfor-
mation has two disadvantages: 1) it is error prone, especially for non-trivial
grammars, and 2) the loss of some parses (as illustrated in the example in (Frost
et al 2007)) complicates the integration of semantic actions, especially in NLP.

2.3 An Introduction to Parser Combinators

The details in this description have been adapted to our approach, and are
limited to recognition. We extend the technique to parsers later. Assume that
the input is a sequence of tokens input, of length #input the members of which
are accessed through an index j. Recognizers are functions which take an index
j as argument and which return a set of indices. Each index in the result set
corresponds to a position at which the parser successfully finished recognizing a
sequence of tokens that began at position j. An empty result set indicates that
the recognizer failed to recognize any sequence beginning at j. The result for an
ambiguous input is a set with more than one element. This use of indices instead
of the more conventional subsequence of input is a key detail of the approach:
we need the positions to index into the memotables.

A recognizer term ’x’ for a terminal >x’ is a function which takes an index
j as input, and if j is less than #input and if the token at position j in the
input corresponds to the terminal ’x’, it returns a singleton set containing
j + 1, otherwise it returns the empty set. The empty recognizer is a function
which always succeeds returning a singleton set containing the current position.
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A recognizer for alternation plq is built by combining recognizers for p and q,
using the combinator <+>. When the composite recognizer is applied to index j,
it applies p to j, applies q to j, and subsequently unites the resulting sets.

A composite recognizer corresponding to a sequence of recognizers p q on the
right hand side of a grammar rule, is built by combining those recognizers using
the parser combinator *>. When the composite recognizer is applied to an index
J, it first applies p to j, then it applies q to each index in the set of results
returned by p. It returns the union of these applications of q. The combinators
term, empty, <+> and *> are defined (in functional pseudo code) as follows:

{} .J > #input
term t j=<{j+1} ,j" element of input =t

{} , otherwise
empty j={j}
(P <> q j=@ Jj) YU (@ J)

(p * q j=map ¢ ® j)

The combinators can be used to define composite mutually-recursive recog-
nizers. For example, the grammar s ::= ’x’ s s | empty can be encoded as
s = (term ’x’ *> s *> s) <+> empty. Assuming the input is “xxxx”, then:

(empty <+> term ’x’) 2 => {2,3}
(term ’x’ *> term ’x’) 1 => {3}

s 0 =>{4, 3, 2, 1, 0}

The last four values in the result for s 0 correspond to proper prefixes of the
input being recognized as an s. The result 4 corresponds to the case where the
whole input is recognized as an s. Note that we have used sets in this explanation
to simplify later development of the combinators.

3 The Combinators

3.1 Preliminaries

The actual implementation of the combinators *> and <+> for plain recognizers
in Haskell is straightforward, and makes use of a library for Sets of Ints. An
excerpt is given below. In this fragment and the ones that follow, we make
some simplifications to ease presentation of the key details. Full working code is
available from the URL given in Section 1. We omit details of how we access the
input throughout this paper, treating it as a constant value.

type Pos = Int
type PosSet IntSet
type R Pos -> PosSet
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(<+>) :: R->R ->R

p <+>gq = \r -> union (p r) (q )

(*>) :: R->R ->R

p * q = \r -> unions $ map q $ elems $ p r
parse :: R -> PosSet

parse p =p 0

In the following we develop the combinators *> and <+> incrementally, by
adding new features one at a time in each subsection. We begin with memo-
ization, then direct left recursion, then indirect left recursion, then parsing (to
trees). The revised definitions accompany new types which indicate a particular
version of the combinator. The modifications to <+> are omitted when they are
reasonably straightforward or trivial.

3.2 Memoizing Recognizers

We modify the combinators so that a memotable is used during recognition. At
first the table is empty. During the process it is updated with an entry for each
recognizer that is applied to a position. Recognizers to be memoized are labelled
with values of a type chosen by the programmer. These labels usually appear as
node labels in resulting parse trees, but more generality is possible, e.g. to hold
limited semantic information. We require only that these labels be enumerable,
i.e. have a unique mapping to and from Ints, a property that we use to make
table lookups more efficient by converting label occurrences internally to Ints
and using the optimized IntMap library.

The memotable is a map of memo label and start position to a result set. The
combinators are lifted to the monad level and the memotable is the state that is
threaded through the parser operations, and consulted and/or updated during
the memoize operation. We use a standard state monad:

type ILabel = Int
type RM memolLabel = Pos -> StateM (State memoLabel) PosSet
data StateM s t = State {unState:: s -> (¢, s)}
type State nodeName = IntMap (IntMap PosSet)
(¥*>) :: RM 1 ->RM1 ->RM1
p*»q=\r >doendp < pr
end_gs <- mapM q (elems end_p)
return $ unions end_gs

The memoize function makes the decision regarding reuse of results. It is
implemented as a “wrapper” around other parsers, hence any sub-parser can be
memoized. The function checks whether an entry exists in the memotable for the
given parser label and position, returning the stored result if yes, otherwise it
runs the parser and stores the results before returning them. update_table adds
the new information to the table. Note that the update effect is to “overwrite”
the previous information. The insertWith...insert combination merges into the
outer table (insertWith) a new inner table that discards (insert) any previous
entry for that label and start position. This is necessary to update the stored
information as (left) recursion unwinds (see section 3.3):
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memoize :: Enum 1 => 1 ->RM 1 ->RM 1
memoize e_name parser pos
= do mt <- get
case lookupT i_name pos mt of
Just res -> return res
Nothing -> do res <- parser pos
modify (update_table res)
return res
where
i_name = fromEnum e_name
update_table :: PosSet -> State 1 -> State 1
update_table res = insertWith (\_ prev -> insert pos res prev)
i_name (singleton pos res)

3.3 Accommodating Direct Left Recursion

To accommodate direct left recursion, we use “left-rec counts” c¢;; denoting the
number of times a recognizer r; has been applied to an index j. For non-left-
recursive recognizers c;; will be at most one. For left-recursive recognizers, c;;
is increased on recursive descent. Application of a recognizer r; to an index j is
curtailed whenever c;; exceeds the number of unconsumed tokens of the input
plus 1. At this point no parse is possible (other than spurious parses from cyclic
grammars — which we want to curtail anyway.) As an illustration, consider
the following portion of the search space being created during the parse of two
remaining tokens on the input (where N, P and Q are nodes in the parse search
space corresponding to nonterminals. A, B and C are nodes corresponding to
terminals or nonterminals):

The last call of the parser for N should be curtailed owing to the fact that,
irrespective of what A, B, and C are, either they must require at least one input
token, or else they must rewrite to empty. If they all require a token, then the
parse cannot succeed. If any rewrite to empty, then the grammar is cyclic (N is
being rewritten to N). The last call should be curtailed in either case.

Curtailing a parse when a branch is longer than the length of the remaining
input is incorrect as this can occur in a correct parse if recognizers are rewrit-
ten into other recognizers which do not have “token requirements to the right”.
Also, we curtail the recognizer when the left-rec count exceeds the number of
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unconsumed tokens plus 1. The plus 1 is necessary for the case where the recog-
nizer rewrites to empty on application to the end of the input.

This curtailment test is implemented by passing a “left-rec context” down
the invocation tree. The context is a frequency table of calls to the memoized
parsers encountered on the current chain.

type L_Context = [(ILabel, Int)]
type LRM memolabel = L_Context -> RM memolabel

Only *> and memoize need to be altered beyond propagating the information
downwards. memoize checks before expanding a parser p to see if it has been
called more than there are tokens left in the input, and if so, returns an empty
result, otherwise continues as before though passing a context updated with an
extra call to p. The alteration to *> controls what context should be passed to
q: the current context should only be passed when p has consumed no tokens,
i.e. has done nothing to break the left-recursive chain.

(*>) :: LRM 1 -> LRM 1 -> LRM 1
p *> q = \ctxt r -> do end_p <- p ctxt r
let pass_ctxt e | e ==1 = ctxt
| otherwise = []
end_gs<-mapM (\e-> q (pass_ctxt e) e)(elems end_p)
return $ unions end_gs
memoize :: Enum 1 => 1 -> LRM 1 -> LRM 1
memoize e_name p ctxt pos
= do mt <- get
case lookupT i_name pos mt of
Just res -> return res
Nothing | depth_cutoff i_name ctxt >
(length_input - pos + 1) -> empty
| otherwise -> do
. p (increment i_name ctxt) pos ..
where i_name = fromEnum e_name
depth_cutoff i e = case lookup i e of Nothing -> 0
Just fe -> fe

Notice what happens when unwinding the left-recursive calls. At each level,
memoize runs the parser and adds the results to the table for the given label
and start position. This table update, as mentioned earlier, overwrites previous
information at the start position, and therefore the table always contains the
“best results so far”. Note that the algorithm accommodates cyclic grammars.
It terminates for such grammars with information being stored in the memotable
which can be subsequently used to identify cycles.

3.4 Accommodating Indirect Left Recursion

We begin by illustrating how the method above may return incomplete results
for grammars containing indirect left recursion. Consider the following grammar,
and subset of the search space, where the left and right branches represent
the expansions of the first two alternate right-hand-sides of the rule for the
nonterminal S, applied to the same position on the input:
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S ::=8 | Q1P| x S

P ::=8 / + \

Q ::=T S . Q

T ::=P | |
S . T
| |
P P
| |
S . S .
|

curtail S

Suppose that the branch for the left alternative is expanded before the right
branch during the search, and that the left branch is curtailed due to the left-rec
count for S exceeding its limit. The results stored for P on recursive ascent of
the left branch is an empty set. The problem is that the later call of P on the
right branch should not reuse the empty set of results from the first call of P as
they are incomplete with respect to the position of P on the right branch (i.e. if
P were to be reapplied to the input in the context of the right branch, the results
would not necessarily be an empty set.) This problem is a result of the fact that,
on the left branch, S caused curtailment of the results for P as well as for itself.

Our solution to this problem is as follows: 1) Pass left-rec contexts downwards
as in subsection 3.3. 2) Generate the reasons for curtailment when computing
results. For each result we need to know if the subtrees contributing to it have
been curtailed through any left-rec limit, and if so, which recognizers caused
the curtailment. 3) Store results in the memotable together with a subset of
the current left-rec context corresponding to those recognizers that caused the
curtailment at the current position, and 4) Whenever a stored result is being
considered for reuse, the left-rec-context of that result is compared with the
left-rec-context of the current node in the parse space. The result is only reused
if, for each recognizer in the left-rec context of the result, the left-rec-count is
smaller than or equal to the left-rec-count in the current context. This ensures
that a result stored for application P of a recognizer at index j is only reused
by a subsequent application P’ of the same recognizer at the same position, if
the left-rec context for P’ would constrain the result more, or equally as much,
as it had been constrained by the left-rec context for P at j. If there were no
curtailment, the left-rec context of a result would be empty and that result can
be reused anywhere irrespective of the current left-rec context.

This strategy extends the recognizer return type to include a set of labels that
caused curtailments during that parse. Note that we only collect information
about curtailment for the current position, so only collect results from q in the
case where p consumed no input, i.e. where the endpoint of p is the same as the
starting position.

IntSet

type CurtailingNTs
type UpResult (CurtailingNTs, PosSet)

type State nodeName = IntMap (IntMap (L_Context,UpResult))
type CLRM memoLabel = L_Context -> Pos
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-> StateM (State memoLabel) UpResult

(*>) :: CLRM 1 -> CLRM 1 -> CLRM 1
p *> q = \ctxt r -> do (cut,end_p) <- p ctxt r

let pass_ctxt e | e == r = ctxt
| otherwise = []
merge_cuts e prev new
| e ==r = union prev new
| otherwise = prev

join (prev_cut, prev_result) e
= do (mew_cut, result) <- q (pass_ctxt e) e
return ( merge_cuts e prev_cut new_cut
, union prev_result result )
end_gs <- foldM join (cut, empty) end_p
return end_gs

The function <+> is modified to merge information from the subparsers:

(<+>) :: CLRM 1 -> CLRM 1 -> CLRM 1
(p <+> q) inp cc = do (cutl,m) <- p inp cc
(cut2,n) <- q inp cc
return ( union cutl cut2 , union m n )

When retrieving results, memoize compares the current context with the
pruned stored context. Reuse is only allowed if every label in the stored con-
text appears in the current context and is not less constrained in the current
context. Otherwise, the parser is run further in the current context to compute
the results that were curtailed (and hence missing) in the earlier call.

pruneContext :: CurtailingNTs -> L_Context -> L_Context
pruneContext rs ctxt = [nc | nc@(n,c) <- ctxt, n ‘member‘ rs]
canReuse :: L_Context -> L_Context -> Bool

canReuse current stored

=and [ or [ cc >= sc | (cn,cc) <- current, sn == cn ]

| (smn,sc) <- stored ]

3.5 Building Parse Trees

Turning a recogniser into a parser is straightforward. A set of endpoints now
becomes a map of endpoints to lists of trees that end at that point. The memo-
table type is altered to contain this new information: it stores tree results with
their curtail set and a relevant L_context. The tree type is shown below.

data Tree 1 = Empty | Leaf Token | Branch [Tree 1] |
type ParseResult memoLabel = [(Int, [Tree memoLabel])]
type UpResult memoLabel = (CurtailingNTs, ParseResult memoLabel)

data Stored memoLabel = Stored { s_stored :: UpResult memoLabel
, s_context :: L_Context
, s_results :: [(Int, Tree memolLabel)]}

type State memoLabel = IntMap (IntMap (Stored memoLabel))
type P memoLabel
= L_Context -> Pos -> StateM (State memoLabel) (UpResult memoLabel)
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term parsers now return a list of leaf values with suitable endpoints. The
empty parser returns an empty tree. Alternative parses from <+> are merged by
appending together the lists of trees ending at the same point. The maps are
held in ascending endpoint order to give this operation an O(n) cost.

Sequences require *> to join all results of p with all results of q, forming
new branch nodes in the tree, and merging the resulting maps together. The
former is achieved with addP which combines a particular result from p with all
subsequent results from q, and with addToBranch which merges lists of trees from
both the left and the right into a new list of trees. Notice that this operation
is a cross-product: it must pair each tree from the left with each tree on the
right. Tree merging or packing is done by concatenating results at the same
endpoint.

addP :: [[Tree 1]] -> ParseResult 1 -> ParseResult 1
addP left_result right_output
= [ (re , addToBranch left_result right_results)

| (re , right_results) <- right_output ]
addToBranch :: [[Tree 1]] -> [[Tree 1]1] -> [[Tree 1]]
addToBranch 1lts rts = [r ++ 1 | 1 <- 1lts, r <- rts]

The memoize function handles the rest of tree formation, both labelling and
introducing sharing to avoid an exponential number of trees. Labelling attaches
the memo label to the tree result. Sharing replaces the computed list of results
with a single result that contains sufficient information to find the original list
which will be stored in the memo table. This single result is then returned to
higher parsers as a ‘proxy’ for the original list. To avoid recomputation, we also
store the proxy in the memotable to be retrieved by subsequent parser lookups.
This technique avoids exponential blow-up of the number of results propagated
by parsers. An example of the resulting compact representation of parse trees
has been given in Section 1.

It is important to note that the combinators support addition of semantics.
The extension from trees to semantic values is straightforward via an “applicative
functor” interface, e.g. with operator (<*>) :: P (a => b) -=> P a -> P b. A
monadic interface may also be defined.

Test Set  |#Input|#Parses Our method Tomita’s method
Gl G2 G3 G4 G1 G2 G3 G4
Tomita’s 19 346 0.02 4.79
sent. set 1 26 1,464 0.03 8.66
Tomita’s 22 429(0.02 0.02 0.03 0.03] 2.80 6.40 4.74 19.93
sent. set 2 31| 16,796|0.02 0.02 0.05 0.08| 6.14 14.40 10.40 45.28
40| 742,900{0.02 0.06 0.08 0.09{11.70 28.15 18.97 90.85

Fig. 1. Informal comparison with Tomita’s results (timings in seconds)
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4 Experimental Results

To provide evidence of low-order polynomial costs, we conducted a small scale
evaluation with respect to: a) Four practical natural-language grammars (Tomita
1986, Appendix F, pages 171 to 184); b) Four variants of an abstract highly
ambiguous grammar from Aho and Ullman (1972); and ¢) A medium size NL
grammar for an Air Travel Information System maintained by Carroll (2003).

Our Haskell program was compiled using the Glasgow Haskell Compiler 6.6.
We used a 3GHz/1Gb PC. The performance reported is the “MUT time” as
generated in GHC runtime statistics, which is an indication of the time spent
doing useful computation. It excludes time spent in garbage collection. We also
run with an initial heap of 100Mb and do not fix an upper limit to heap size
(apart from the machine’s capacity).

Note that the grammars we have tested are inherently expensive owing to the
dense ambiguity, and this is irrespective of which parsing method is used.

4.1 Tomita’ Grammars

The grammars used were: G1 (8 rules), G2 (40 rules), G3 (220 rules), and G4
(400 rules) (Tomita 1986). We used two sets of input: a) the two most-ambiguous
inputs from Tomita’s sentence set 1 (page 185 App. G) of lengths 19 and 26 which
we parsed with G3 (as did Tomita), and b) three inputs of lengths 4, 10, and
40, with systematically increasing ambiguity, from Tomita’s sentence set 2.

Figure 1 shows our times and those recorded by Tomita for his algorithm,
using a DEC-20 machine (Tomita 1986, pages 152 and 153 App. D). Clearly
there can be no direct comparison against years-old DEC-20 times. However,
we note that Tomita’s algorithm was regarded, in 1986, as being at least as
efficient as Earley’s and viable for natural-language parsing using machines that
were available at that time. The fact that our algorithm is significantly faster on
current PCs supports the claim of viability for NL parsing.

4.2 Highly Ambiguous Abstract Grammars

We defined parsers for four variants of a highly-ambiguous grammar introduced
by Aho and Ullman (1972): an unmemoized non-left-recursive parser s, a mem-
oized version ms, a memoized left-recursive version sml, and a memoized left—
recursive version with one sub-component also memoized smml:

s = term ’x’ *> s *> s <+> empty
sm = memoize SM $ term ’x’ *> sm *> sm <+> empty
sml = memoize SML $ sml *> sml *> term ’x’ <+> empty

smml = memoize SMML $ smml *> (memoize SMML’ $ smml *> term ’x’) <+>empty

We chose these four grammars as they are highly ambiguous. The results in
figure 2 show that our algorithm can accommodate massively ambiguous input
involving the generation of large and complex parse forests. ‘*’ denotes memory
overflow and ‘-’ denotes timings less than 0.005 seconds.
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|Input Length|No. of parses| s sm sml smml|

6 132(1.22 - - -
12 208,012 * - - 0.02
24| 1.289%e+12 0.08 0.13 0.06
48]  1.313e+-26 0.83 0.97 0.80

Fig. 2. Timings for highly-ambiguous grammars (time in seconds)

4.3 ATIS — A Medium Size NL Grammar

Here, we used a modified version of the ATIS grammar and test inputs generated
by Carroll (2003), who extracted them from the DARPA ATIS3 treebank.

Our modifications include adding 634 new rules and 66 new nonterminals in
order to encode the ATIS lexicon as CFG rules. The resulting grammar consists
of 5,226 rules with 258 nonterminals and 991 terminals. Carroll’s test input set
contains 98 natural language sentences of average length 11.4 words. An example
sentence is “t would like to leave on thursday morning may fifth before six a.m.”.

Times to parse ranged from <1 second for the 5 shortest inputs, to between
12 and 19 seconds for the 5 longest inputs. The average time was 1.88 seconds.
Given that our Haskell implementation is in an early stage of development,
these results suggest that it may be possible to use our algorithm in applications
involving large grammars.

5 Related Work

Our combinators implement the algorithm of Frost, Hafiz and Callaghan (2007).
The relationship of that algorithm to work by others on left recursion is dis-
cussed in detail in their paper. The following is a brief summary: As in Shiel
(1976), the algorithm passes information to parsers which is used in curtailment.
The information passed is similar to the cancellation sets used by Nederhof and
Koster (1993). The algorithm uses the memoization technique of Norvig (1991)
to achieve polynomial complexity with parser combinators, as do Frost (1994),
Johnson (1995), and Frost and Hafiz (2006). Note that Ford (2002) has also used
memoization in functional parsing, but for constrained grammars. Lickman ac-
commodates left-recursion using fixed points (1995), based on an unpublished
idea by Wadler, but he does not address the problem of exponential complex-
ity. Johnson (1995) integrates a technique for dealing with left recursion with
memoization. However, the algorithm on which we base our combinators differs
from Johnson’s O(n?) approach in the technique that we use to accommodate
left recursion. Also, the algorithm facilitates the construction of compact rep-
resentations of parse results whereas Johnson’s appears to be very difficult to
extend to do this. As in Frost and Hafiz (2006) the algorithm integrates “left-
recursion counts” with memoization, and defines recognizers as functions which
take an index as argument and which return a set of indices. The algorithm is an
improvement in that it can accommodate indirect as well as direct left recursion
and can be used to create parsers in addition to recognizers.
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Extensive research has been carried out on parser combinators. A compre-
hensive overview of that work can be found in (Frost 2006). Our approach owes
much to that work. In particular, our combinators and motivation for their use
follows from Burge (1975) and Fairburn (1986). Also, we use Wadler’s (1985) no-
tion of failure as an empty list of successes, and many of the ideas from Hutton
and Meijer (1995) on monadic parsing.

6 Concluding Comments

We have developed a set of parser combinators which allow modular and efficient
parsers to be constructed as executable specifications of ambiguous left-recursive
grammars. The accommodation of left recursion greatly increases what can be
done in this approach, and removes the need for non-expert users to painfully
rewrite and debug their grammars to avoid left recursion. We believe that such
advantages balance well against any reduction in performance, especially when
an application is being prototyped, and in those applications where the addi-
tional time required for parsing is not a major factor in the overall time required
when semantic processing, especially of ambiguous input, is taken into account.
Experimental results indicate that the combinators are feasible for use in small
to medium applications with moderately-sized grammars and inputs. The results
also suggest that with further tuning, they may be used with large grammars.

Future work includes proof of correctness, analysis w.r.t. grammar size, im-
provements for very large grammars, detailed comparison with other combina-
tors systems such as Parsec, reduction of reliance on monads in order to support
some form of “on-line” computation, comparison with functional implementa-
tions of GLR parsers, and extension of the approach to build modular executable
specifications of attribute grammars.
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