
A Demonstration of a Natural Language Query

Interface to an Event-Based Semantic Web

Triplestore

Richard A. Frost*, Jonathon Donais*, Eric Mathews*, Wale Agboola*, and
Rob Stewart**

*School of Computer Science, University of Windsor, Windsor, Canada
**Department of Computer Science, Heriot-Watt University, Edinburgh. U.K.

Abstract. Natural language semantic-web queries can be treated as
expressions of the lambda calculus and evaluated directly with respect
to an event-based triplestore using only basic triple retrieval operations.
This facilitates the accommodation of complex NL constructs.

1 Introduction

Most semantic-web data sources contain sets of “entity-based” triples, e.g.:

<dbpedia:Al_Capone> <dbpedia_owl:spouse> <dbpedia:Mae_Capone> .

Many methods have been developed for querying entity-based triplestores, in-
cluding: [11], [14], [15], [5], [17], [3], [2], [12], [9] and [6]. A good survey of work up
to 2011 is given in [13]. Most of these methods convert the query to the SPARQL
query language and then run the SPARQL query against the triplestore.

There are two difficulties with this approach. Firstly, consider a query with
a simple prepositional phrase “in 1918”:

"Who married Al Capone in 1918?"

Adding the following triple is insufficient as Capone could have married twice:

<..Al_Capone> <..marriage_year> <..1918>.

There are solutions to this problem which involve various forms of reification.
However, most of these solutions appear to complicate translation of the NL
query to SPARQL.

Another problem is the apparent difficulty of translating complex NL queries
to SPARQL. Consider the following query:

"Who joined every gang that was joined by a person who stole a car

in 1899 or 1908 in Brooklyn?"

We are not aware of any approach, other than ours, that can accommodate
such NL queries, which contain chained complex prepositional phrases containing
arbitrarily-nested quantififiers (e.g. “a” and “every”).

2 An NL Interface to the Semantic Web

2 Event-based triplestores

Our proposed solution, called DEV-NLQ, is to represent data using a form of
reification involving event-based triples, and to treat NL queries as expressions
of the lambda calculus which are evaluated directly with respect to event-based
triplestores. For example, in the following, event1030 ties the data together:

<...event1030> <...type> <...marriage_ev> .

<...event1030> <...subject> <...Al_Capone> .

<...event1030> <...object> <...Mae_Capone" .

<...event1030> <...year> <..."1918"> .

The event-based triplestore that we use in our demo can be accessed at:
http://speechweb2.cs.uwindsor.ca/ESWC/demo.html

3 Direct evaluation of NL queries

In [7] we describe a denotational semantics for natural-language query inter-
faces to event-based triplestores. Our semantics is based on an efficient version
of Montague Semantics [4]. Our semantics accommodates proper and common
nouns, adjectives, intransitive and transitive verbs, negation, and chained com-
plex prepositional phrases containing arbitrarily-nested quantifiers.

The idea is that every word in English (after disambiguation by the parser)
denotes a function. For example, in the following, person, capone, a etc. are
functions defined in the Haskell programming language. The functions getts 1

and getts 3 are basic triple retrieval functions. See [7] for explanations. Note
that e => r means that r is the result of evaluating e. Note also that we ignore
URIs in the following, but address them in section 4.

e.g. getts_1 ("?", "subject", "torrio") => ["event1009", "event1011"],

getts_3 ("event1009", "type", "?") => ["join_ev"]

get members set = defined in terms of getts_1

get_subjs_of_event_type et = defined in terms of getts_1 and getts_3

gang = get_members "gang"

e.g. gang => ["fpg", "bowery"]

smoke = get_subjs_of_event_type "smoke_ev"

e.g. smoke => ["capone"]

capone setofents = member "capone" setofents

e.g. capone smoke => True

a nph vbph = length (intersect nph vbph) /= 0

every nph vbph = subset nph vbph

no nph vbph = length (intersect nph vbph) = 0

DEMO of an NL Query Interfaces to the Semantic Web 3

nounand s t = intersect s t

that = nounand

nounor s t = mkset (s ++ t)

-- termand is a higher-order function which creates a new function from

the two functions given as input

termand tmph1 tmph2 = f where

f setofents = (tmph1 setofents) && (tmph2 setofents)

e.g. (capone ‘termand‘ torrio) person => True

-- steal is a complex function (see Frost et al 2014 for the definition)

steal tmph preps = defined in terms of getts_1 and getts_3

e.g. steal (a car) [("year", year_1899 ‘termor‘ year_1908),

("location", brooklyn)] => ["capone"]

Note that we can define the meaning of words in terms of others, e.g.

gangster = join (a gang)

4 Interfacing the query processor to the Semantic Web

We use the Haskell package hsparql [1] to interface our query processor to an ex-
ternal SPARQL endpoint containing our data. The functions getts 1 and getts 3

above are re-defined in terms of hsparql functions in a module called Getts 4V.
All strings, such as "capone" in the definitions exemplified in section 3 are mod-
ified by a function gts to include a URI prefix. The Haskell code is available at
the following URL:

http://speechweb2.cs.uwindsor.ca/ESWC/src1

Note that we do not translate the whole NL query to SPARQL. The hsparql

functions only issue two types of basic SPARQL SELECT requests:

SELECT ?first WHERE {?first, <given_second>, <given-third>} .

SELECT ?third WHERE {<given_first>, <given_second>, ?third} .

Note that our semantics could be used with other non-SPARQL-endpoint
interfaces to triplestores.

5 The demonstration

Readers can access our query interface as follows: 1) go to the Welcome page
http://speechweb2.cs.uwindsor.ca/ESWC/ which has three links: “Live Demo”,
“Source Code”, and “Haskell Code ..”, 2) -> “Live Demo” -> “List of triples
in the Graph” to see how we represent data such as “Capone stole car 1 in
1908 in Brooklyn”, 3) -> Welcome page -> “Source Code” -> gangster v4.hs

which contains the Haskell definitions of the denotations of different words, 4)

4 An NL Interface to the Semantic Web

-> Welcome page -> “Source Code” -> Getts v4.hs which contains the code
that links our semantics program to our external tripestore using the h sparql

module, 5) -> Welcome page -> “Live Demo” -> “Click here for more examples”
which shows how brackets are placed in the queries according to their syntactic
structure. Readers can copy and paste some of the examples into the “query”
box on the “Live Demo” page and hit the “run query” button. Readers can also
experiment with their own bracketed queries.

Queries are evaluated by our Haskell program in the same way as the ex-
pression 3 + (2 * 4). For example the query “Which gangster who stole a car
in 1899 or 1908 in Brooklyn, joined a gang that was joined by Torrio?” can be
entered into the query box as the following bracketed expression (note that you
cannot cut and paste the expression from this .pdf document as the quotes are
different in pdf).

which (gangster ‘that‘(steal’(a car)

[(gts "year",year_1899 ‘termor‘ year_1908),

(gts "location", brooklyn)]))

(join (a (gang ‘that‘ (joined_by torrio))))

the following result is returned by our query interface:

["http://richard.myweb.cs.uwindsor.ca/ESWC/gangster_triplestore#capone"]

6 Concluding comments

We are currently integrating the semantics with our NL parser [8] which will
introduce the brackets according to the syntactic structure of the query.

Our approach assumes that the full URIs are known (and used in the defi-
nitions of the denotations of words). We intend to investigate the integration of
the method of Walter et al [16] for mapping query words to appropriate URIs
and building the denotations of words in real-time when the query is parsed.

Our approach assumes the existence of event-based triplestores. We are cur-
rently investigating how to extract sets of event-based triples from conventional
triplestores as required. However, we also note that triplestores are being de-
veloped to accommodate “richer” contextual data. YAGO2 is an example [10]
which uses a simple form of reification to represent temporal and spatial proper-
ties. We are developing another denotational semantics so that NL queries can
be evaluated directly with respect to YAGO2 data.

Because there is no need to translate NL queries to a formal query language
such as SPARQL, F-Logic or SPOTLX, we can concentrate solely on linguistic
issues and develop semantics to accommodate highly-complex NL constructs.

7 Acknowledgements

The authors acknowledge the Natural Science and Engineering Council of Canada
(NSERC), and the reviewers who provided very useful constructive criticism.

DEMO of an NL Query Interfaces to the Semantic Web 5

References

1. The hsparql package. http://hackage.haskell.org/package/hsparql-0.1.2 Author:
Jeff Wheeler, Maintained by: Rob Stewart.

2. D. Damljanovic, M. Agatonovic, and H. Cunningham. Freya: An interactive way of
querying linked data using natural language. In The Semantic Web: ESWC 2011
Workshops, pages 125–138. Springer, 2012.

3. M. Damova, D. Dannelles, R. Enache, M. Mateva, and A. Ranta. Natural lan-
guage interaction with semantic web knowledge bases and lod. In Towards the
Multilingual Semantic Web. Springer, 2013.

4. D. Dowty, R. Wall, and S. Peters. Introduction to Montague Semantics. D. Reidel
Publishing Company, Dordrecht, Boston, Lancaster, Yokyo, 1981.

5. S. Ferre. Squall: A controlled natural language for querying and updating rdf
graphs. In Proceedings of CNL 2012, pages 11–25. LNCS 7427, 2012.

6. A. Freitas, F. F. de Faria, S. O’Riain, and E. Curry. Answering natural language
queries over linked data graphs: a distributional semantics approach. In Proceedings
of the 36th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 1107–1108. ACM, 2013.

7. R. A. Frost, W. Agboola, and E. Matthews. Querying graph-structured data using
natural language. In Proc GraphQ Workshop EDBT/ICDT 2104, pages 192–199,
2014.

8. R. Hafiz and R. Frost. Lazy combinators for executable specifications of general
attribute grammars. In Proceedings of the 12th International Symposium on Prac-
tical Aspects of Declarative Languages (PADL), pages 167–182. ACM-SIGPLAN,
Jan. 2010.

9. S. Hakimov, H. Tunc, M. Akimaliev, and E. Dogdu. Semantic question an-
swering system over linked data using relational patterns. In Proc. of the Joint
EDBT/ICDT 2013 Workshops, pages 83–88. ACM, 2013.

10. J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. Yago2: A spatially
and temporally enhanced knowledge base from wikipedia. Artificial Intelligence,
194:28–61, 2013.

11. E. Kaufmann and A. Bernstein. Evaluating the usibility of natural language query
languages and interfaces to semantic web knowledge bases. Web Semantics - Sci-
ence, Services and Agents on the World Wide Web, 8(4):377–393, Nov 2009.

12. V. Lopez, M. Fernández, E. Motta, and N. Stieler. Poweraqua: Supporting users
in querying and exploring the semantic web. Semantic Web, 3(3):249–265, 2012.

13. V. Lopez, V. Uren, M. Sabou, and E. Motta. Is question answering fit for the
semantic web?: a survey. Semantic Web, 2(2):125–155, 2011.

14. A. Ran and R. Lencevicius. Natural language query system for rdf repositories. In
Proceedings of the 7th International Symposium on Natural Language processing,
pages 1–6. SNLP, 2007.

15. C. Unger and P. Cimiano. Pythia: Compositional meaning construction for
ontology-based question answering on the semantic web. In NLDB 2011, LNCS
6716, pages 153–160, 2011.

16. S. Walter, C. Unger, P. Cimiano, and D. Bär. Evaluation of a layered approach
to question answering over linked data. In The Semantic Web–ISWC 2012, pages
362–374. Springer, 2012.

17. M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath, V. Tresp, , and G. Weikum.
Natural language questions for the web of data. In The 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 379–390. ACL, July 2012.

