
Monadic Memoization towards

Correctness-Preserving Reduction of Search

Richard Frost

School of Computer Science, University of Windsor
Ontario, Canada

richard@uwindsor.ca

Abstract. Memoization is a well-known method which makes use of
a table of previously-computed results in order to ensure that parts of
a search (or computation) space are not revisited. A new technique is pre-
sented which enables the systematic and selective memoization of a wide
range of algorithms. The technique overcomes disadvantages of previous
approaches. In particular, the proposed technique can help programmers
avoid mistakes that can result in sub-optimal use of memoization. In
addition, the resulting memoized programs are amenable to analysis us-
ing equational reasoning. It is anticipated that further work will lead to
proof of correctness of the proposed memoization technique.

1 Introduction

Search is ubiquitous in artificial intelligence. For many difficult problems, search
time grows exponentially with respect to the problem size. In many cases, the
time can be significantly reduced by making sure that parts of the search space
are not revisited unnecessarily. In some cases a reduction in complexity is pos-
sible.

1.1 The Need for Selective Memoization

Some parts of a program can benefit from memoization whereas other parts will
not. For example, the time complexity of the following naive Fibonacci program
can be reduced from exponential to liner through memoization:

fib 0 = 1
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)

The reason for the improvement is that in the unmemoized form, the second call
of fib (n - 2) repeats a computation carried out by the first call fib (n -
1). Expansion of the computation tree will illustrate the extent of recomputation
that can be prevented by memoization. On the other hand, consider a program
that simply returns the first element of a list. This operation has constant com-
plexity. Memoization would require that the list input be compared with lists

Y. Xiang and B. Chaib-draa (Eds.): AI 2003, LNAI 2671, pp. 66–80, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Monadic Memoization towards Correctness-Preserving Reduction of Search 67

used as keys in the memo table. The complexity would now be O(length of the
list).

A solution, therefore, is to provide the programmer with a function memoize
which can be used to memoize selected parts of the program. The function
memoize takes care of updating and using the memo tables when the memoized
parts of the program are executed.

1.2 The Need for Pure Functionality?

One should only memoize parts of the program that are purely functional in
the sense that the result should only depend on the input arguments, and there
should be no side-effects, The reason for this is that memo-table lookup uses
inputs as keys. If the result depends on other values that are accessible through
non-functional calls, then the memo-table will return the wrong result. Also,
if a component has side effects, such as having a subcomponent that updates
a counter, then memoization will corrupt those side effects.

Therefore, a necessary, but not sufficient requirement for correct memoiza-
tion, is that the components to be memoized must be purely functional. We use
the term “correct” in the sense that a correct memoization process should not
change the results returned by a program, or its termination properties. Many
search algorithms are very complicated and programmers will be tempted to use
non-functional features in their implementation. For example, the use of update-
able global variables for various types of bookkeeping. It is difficult to determine
which parts of a complicated program are purely functional, and can therefore
be safely memoized. One solution to this is to use a pure-functional program-
ming language such as Miranda (Turner 1985) or Haskell (Hudak et.al. 1992) to
implement complicated search algorithms.

1.3 Memoization in a Pure-Functional Language

Use of a pure-functional programming language prevents certain types of inac-
currate use of memoization, and it also facilitates the construction of a memo-
ization process that is amenable to analysis through equational reasoning, but
it has a major disadvantage: memo tables cannot be implemented as updateable
stores. Update is a side effect and is not allowed in a pure-functional language.

The solution is to provide the memo table as an extra argument to functions
that are to be memoized. Memoized functions now begin by checking to see if the
original input argument has an entry in the memo-table given as the additional
input argument. If it has, then that result is returned with the original memo-
table. If not, the body of the function is executed and the result is returned
together with a new memo-table containing the additional entry. This is not as
inefficient as it might first appear. Pure-functional programming languages use
pointers to re-use parts of input arguments; this is safe owing to the fact that
there is no update and therefore no possibility of corruption of a value that is
pointed to.

68 Richard Frost

1.4 The Need for a more Formal Technique

Two problems remain. Firstly, it is possible to make a mistake in threading the
memo table through components resulting in sub-optimal use of memoization.
For example, consider the following, which uses notation that is defined more
fully in section 2.

(p $then q) inp = [] , if rp = []
= q rp , otherwise

where rp = p inp

This defines an infix higher-order operator then which takes two functions p
and q as input and which returns a function h as result, such that when that
function is applied to some input inp it begins by computing the value rp by
applying p to inp. If rp is an empty list, then h returns an empty list as result.
If r is not empty, then h returns the result obtained by applying q to rp.

The higher-order function then is similar to the operator of function compo-
sition, but differs in that the second function is not applied if the first function
returns an empty list as result. This kind of operator can be used to prevent in-
finite looping that would otherwise occur when certain mutually-recursively de-
fined functions are composed. Revising the definition of then in order to thread
memo tables through p and q results in the following:

(p $mthen q) (inp, table) = ([], table), if rp = []
= q (rp, tp), otherwise

where
(rp, tp) = p (inp, table)

Even with this relatively simple definition, we have made a mistake. If the func-
tion p returns an empty list, possibly signifying that it failed in some sense when
applied to the input, it may have done some work that has been recorded in
the memo table tp returned as result. The definition above loses the results of
this work. The correction is to replace ([], table) with ([], tp). We show
later that this error can result in exponential behavior for a top-down fully-
backtracking language recognizer that would otherwise have cubic complexity
after memoization.

A second problem is that the ad hoc memoization process can result in other
errors which corrupt the result returned. The memoization process described so
far requires that every function which is to be memoized, or which interacts with
a function to be memoized, must be modified to accept the extra memo table
input and return the table as part of its output.

To overcome these shortcomings, a more structured/formal technique for
memoizing the search algorithm is required. We need to guarantee that the
memo-tables are threaded through appropriate components of the search algo-
rithm, and we need to prove that the memoization process preserves the correct-
ness of the search algorithm.

Monadic Memoization towards Correctness-Preserving Reduction of Search 69

1.5 Monadic Memoization

According to Wadler (1990), monads were introduced to computing science by
Moggi (1989) who noticed that reasoning about programs that involve handling
of state, exceptions, I/O, or non-determinism can be simplified, if these features
are expressed using monads. Inspired by Moggi’s ideas, Wadler proposed mon-
ads as a way of systematically adding such features to algorithms. The main
idea behind monads is to distinguish between the type of values and the type
of computations that deliver these values. This paper shows how monads can
be used to systematically memoize search algorithms in a way that facilitates
proof of correctness of the memoization process. A monad is a triple (M, unit,
bind) where M is a type constructor, and unit and bind are two polymorphic
functions. M can be thought of as a function on types, that maps the type of
values into the type of computations producing these values. unit is a function
that takes a value and returns a corresponding computation; the type of unit is
a -> Ma. The function bind represents sequencing of two computations where
the value returned by the first computation is made available to the second (and
possibly subsequent) computation. The type of bind is

Ma -> (a -> Mb) -> Mb

In order to use monads to provide a structured method for adding new effects to
a functional program, we begin by identifying all functions that will be involved
in those effects. We then replace those functions, which can be of any type a
-> b, by functions of type a -> Mb. In effect, we change the program so that
selected function applications return a computation on a value rather than the
value itself. This computation may be used to add features such as state to the
program. In order to effect this change, we use the function unit to convert
values into computations that return the value but do not contribute to the
new effects, and the function bind is used to apply a function of type a ->Mb
to a computation of type Ma. Having made these changes, the original program
can be obtained by using the identity monad idm, as defined later. In order
to memoize the program we simply replace the identity monad with the state
monad stm and make a few local changes as required to the rest of the program.

1.6 Advantages of this Approach

The technique facilitates the systematic and controlled use of memoization in
search algorithms, such that:

1. The approach is purely functional and equational reasoning can be used to
analyze the program and to prove correctness of the memoization process.
The use of monads further facilitates such proof.

2. As with many other proposed methods for memoization, the use of a “mem-
oize” function allows the search engineer to selectively memoize parts of the
search algorithm.

3. The approach helps to avoid mistakes in threading memo-tables through
functions in the correct order and therefore facilitates optimal use of mem-
oization.

70 Richard Frost

1.7 Structure of the Rest of the Paper

We begin by briefly describing related work. We then introduce some notation.
We follow this with a description of how monadic memoization can be used to
improve the complexity of the naive Fibonacci program. At first, the reader may
think that we are developing some heavy-duty techniques to achieve what can
be achieved by a simple rewrite of the naive Fibonacci program. However, sec-
tion 8 shows that the same monad, and the same memoization function
can be used to systematically and easily improve the complexity of relatively
complicated definitions of operators that can be used to quickly build top-down
fully-backtracking language recognizers. Such recognizers are of interest in their
own right as they are highly modular, simple to construct, and can accommodate
ambiguous grammars. We then sketch out a proof of correctness of the memo-
ization process. We conclude by discussing how the approach can be applied to
other search problems.

2 Overview of Related Work

1. Memoization has a long history. Michie (1968) and Hughes (1985) are two
of many publications on this subject.

2. Threading of memo tables though functional programs has been described
by Field and Harrison (1988) and investigated in detail by Khoshnevisan
(1990).

3. Wadler (1990) introduced the use of monads to add effects to pure functional
programs. Subsequent publications (e.g. Wadler,1995) include discussion of
the use of monads to structure functional recognizers and evaluators.

4. Koskimies (1990) convincingly explains how how top-down fully-backtrack-
ing language processors are considerably more modular than those con-
structed with alternative search strategies.

5. Norvig (1991) shows how memoization of top-down fully-backtracking lan-
guage recognizers written in LISP results in processors that are as efficient
and as general as Earley’s algorithm, with the exception that they can-
not accommodate. left-recursive productions. Norvig’s recognizers have cubic
complexity compared to exponential behavior of the unmemoized versions.
Selective memoization is achieved through use of a memoization function
defined in terms of an updateable memo-table. Owing to the fact that mem-
oization involves updateable state Norvig’s approach requires considerably
more complex apparatus than equational reasoning to prove correctness of
the memoization process.

6. The use of higher-order functions (combinators) to build functional lan-
guage processors, which is described in detail in section 7, was originally
proposed by Burge (1975) and further developed by Wadler (1985) and Fair-
burn (1986). It was first used to build evaluators for ambiguous natural-
language by Frost and Launchbury (1989). It is now frequently used by the
functional-programming community for language prototyping and natural-
language processing. In the following, we describe the approach with respect

Monadic Memoization towards Correctness-Preserving Reduction of Search 71

to language recognizers although the technique can be readily extended to
parsers, syntax-directed evaluators and executable specifications of attribute
grammars (Frost 1992 and 2002, Augusteijn 1993, and Leermakers 1993).

7. Leermakers (1993), Frost (1993), and Johnson (1995) have described differ-
ent techniques by which the functional approach to building top-down back-
tracking language processors can be extended to accommodate left-recursive
productions. It is interesting to note that Johnson’s approach uses mem-
oization, together with continuation-passing-style programming, to achieve
efficiency and accommodate left-recursion.

8. Frost and Szydlowski (1995) show how purely-functional top-down back-
tracking language processors can be memoized, and proved that time com-
plexity can be reduced from exponential to cubic.

9. The use of monads to systematically memoize purely-functional top-down
recognizers was suggested to the author of this paper by an anonymous re-
viewer of the paper by Frost and Szydlowski. The reviewer identified the
mistake in the threading of memo-tables through the $then operator as
discussed earlier, and pointed out that this would result in exponential be-
haviour for certain inputs. A brief discussion of the potential use of monads
in memoization of pure-functional recognizers was given at the end of their
revised paper.

10. Panitz (1996) has developed a technique for proving termination for lazy
functional languages by abstract reduction, and has used this technique to
prove termination for a sub-set of recognizers that can be constructed using
the combinators of Frost and Launchbury, a variation of which are used in
section 7.

3 Notation

We use the notation of the programming language Miranda1 (Turner 1985),
rather than a functional pseudo-code, in order that readers can experiment with
the definitions directly. The technique can be implemented in other languages.

– f = e defines f to be a constant-valued function equal to the expression e.
– f a1 ... an = e can be loosely read as defining f to be a function of n

arguments whose value is the expression e. However, Miranda is a fully
higher-order language — functions can be passed as parameters and returned
as results. Every function of two or more arguments is actually a higher order
function, and the correct reading of f a1 ... an = e is that it defines f to
be a higher-order function, which when partially-applied to input i returns
a function f’ a2 ... an = e’, where e’ is e with the substitution of i for
a1.

– The notation for function application is simply juxtaposition, as in f x.
Function application has higher precedence than any operator.

1 Miranda is a trademark of Research Software Ltd.

72 Richard Frost

– Function application is left associative. For example, f x y is parsed as (f
x) y, meaning that the result of applying f to x is a function which is then
applied to y. Round brackets are used to override the left-associative order
of function application. For example, the evaluation of f (x y) requires x
to be applied to y, and then f to be applied to the result.

– In a function definition, the applicable equation is chosen through pattern
matching on the left-hand side in order from top to bottom, together with
the use of guards following the keyword if.

– Round brackets with commas are used to create tuples, e.g. (x, y) is a bi-
nary tuple. Square brackets and commas are used to create lists, e.g. [x,
y, z]. The empty list is denoted by [] and the notation x : y denotes the
list obtained by adding the element x to the front of the list y. The notation
"x1 .. xn" is shorthand for [’x1’, .. ,’xn’]

– t1 -> t2 is the type of functions with input type t1 and output type t2.
f :: e states that f is of type e, and t1 == t2 declares t1 and t2 to be
type synonyms.

– The notation x => y means that y is the result of evaluating x.

4 Rewriting the Fibonacci Program in Monadic Form –
The Identity Monad

We begin by defining the identity monad idm (Wadler 1995), in which the com-
putation simply returns its value, and bind is postfix function application. The
star * means any type.

idm * == *

unit1 :: * -> idm *
unit1 x = x

bind1 :: idm * -> (* -> idm **) -> idm **
(p $bind1 k) = k p

We can use this monad to restructure the naive Fibonacci program given in
section 1. This is the first step towards memoization:

fib1 0 = unit1 1
fib1 1 = unit1 1
fib1 n = fib1 (n - 1) $bind1 f

where f a = fib1 (n - 2) $bind1 g
where g b = unit1 (a + b)

Such restructuring is relatively “clerical”: Firstly, we apply unit1 to all values
which are returned by expressions that do not include calls to the fib function.
Secondly, we analyze the expression fib (n - 1) + fib(n - 2) and work out
an order of computation: begin with fib (n - 1) bind this result into the next

Monadic Memoization towards Correctness-Preserving Reduction of Search 73

computation f which involves fib (n - 2), bind the result into the next part of
the program g which returns a computation obtained by applying unit1 to the
result of the addition. The resulting program fib1 acts like fib in all respects.
Simple equational rewriting shows that fib and fib1 are equal.

5 Adding a Counter to the Fibonacci Program –
The State Monad

Before we memoize the fib function, we show how to add a counter to it using
the state monad stm (Wadler 1995) defined as follows:

stm * == state -> (*, state)
state == num
unit2 :: * -> stm *
unit2 a = f where f t = (a, t)
bind2 :: stm * -> (* -> stm **) -> stm **
(m $bind2 k) = f

where f x = (b, z)
where (b, z) = k a y

where (a, y) = m x

In this case, the state is a numeric counter. The function unit2 takes a value v
and returns a computation of type state -> (*, state), which takes a state
as input and returns the value v paired with the state unchanged. For example
when unit2 5 is applied to state 6 (the counter), the result returned is (5, 6).

The operator (infix function) $bind2 is a little difficult to understand at first.
Roughly, it takes a computation m which “involves” a value v of type * as one
operand, and a function k of type (* -> stm **) as the other operand. It picks
out the value v, applies k to it, and returns a computation that when applied
to state returns a pair consisting of the result of the function application and
the state unchanged. Basically, $bind creates a computation that threads the
state through its components. To add a counter to the fib function, we simply
replace the identity monad with the state monad, and make a small change so
that the counter is incremented each time cfib is called:

fib 0 = unit2 1
fib 1 = unit2 1
fib n = cfib (n - 1) $bind2 f

where f a = cfib (n - 2) $bind2 g
where g b = unit2 (a + b)

cfib = count fib

count f n c = (res, k + 1)
where
(res, k) = f n c

74 Richard Frost

The function cfib computes the same value as before paired with the count. For
example:

cfib 20 0 => (10946,21891)

6 Memoizing the Fibonacci Program

In order to memoize the fib function, we use the same state monad stm, change
the type of the state from a numeric counter to a memo-table of type [([char],
[(num, num)])], and replace the count function with the function memoize.
Note that the definition of unit2 and bind2 remain the same.

state == [([char],[(num, num)])]
fib 0 = unit2 1
fib 1 = unit2 1
fib n = mfib (n - 1) $bind2 f

where f a = mfib (n - 2) $bind2 g
where g b = unit2 (a + b)

mfib = memoize "fib" fib

The memoized function mfib has liner time and space complexity, compared
to exponential behavior of the original fib program. To illustrate the flexibil-
ity of this approach. The definition above can be modified so that only the
left-branching call of fib is memoized. Interestingly, the execution data for the
resulting program left mfib shown on the next page, suggests that such mem-
oization results in polynomial complexity.

fib 20 => 10946 time = 235015
fib 21 => 17711 time = 380274
fib 22 => 28657 time = 615308
fib 50 => ran out of heap space

mfib 20 [] => (10946, updated table) time = 5494
mfib 21 [] => (17711, updated table) time = 5775
mfib 22 [] => (28657, updated table) time = 6056
mfib 200 [] => (453973694165307953197296969697410619233826,

updated table) time = 41046

left_mfib 20 [] => (33429, updated table) time = 19171
left_mfib 50 [] => (20365011074, updated table) time = 165170
left_mfib 100 [] => (573147844013817084101, table) time = 1034095
left_mfib 200 [] => (453973694165307953197296969697410619233826,

updated table) time = 7133195

Monadic Memoization towards Correctness-Preserving Reduction of Search 75

The memo table in this case is of type [([char],[(num, num)])], i.e. a list
of pairs. Each pair contains a string of characters identifying a function that
has been memoized, followed by a list containing pairs of input/output values
computed for that function. The reason for having multiple pairs in the table is
that this allows a number of different functions in one program to be memoized
and their results stored in a single table. We make use of this feature in later
examples. The memoize function, defined below, creates a new function from
the function to be memoized, such that the new function performs lookup and
update operations on the memo table being threaded through the computation.

memoize name f inp table
= (res, update newtable name inp res), if (table_res = [])
= (table_res!0, table) , otherwise
where table_res = lookup name inp table

(res, newtable) = f inp table

lookup name inp table
= [], if res_in_table = []
= [res | (i, res) <- (res_in_table!0); i = inp], otherwise
where
res_in_table = [pairs | (n, pairs) <- table; n = name]

update [] name inp res = [(name,[(inp, res)])]
update ((key, pairs):rest) name inp res
= (key,(inp,res):pairs):rest, if key = name
= (key,pairs): update rest name inp res, otherwise

Linear space complexity can be achieved by a simple modification to the
memoize function to keep only the two most-recently computed values in the
memo table.

7 A Modular Top-Down Fully-Backtracking Language
Recognizer

One approach to implementing language processors in a modern functional pro-
gramming language is to define a number of higher-order functions (combinators)
which, when used as infix operators (denoted in this paper by the prefix $), en-
able processors to be built with structures that have a direct correspondence to
the grammars defining the languages to be processed. For example, the func-
tion s, defined below is a recognizer for the language defined by the grammar s
::= ’a’ s s | empty

s = (a $then s $then s) $orelse empty
a = term ’a’

The combinators that we use in this paper are from Frost and Launchbury
(1989):

76 Richard Frost

recognizer == [char] -> [[char]]

term :: char -> recognizer
term c [] = []
term c (t:ts) = [ts], if t = c

= [] , otherwise

orelse :: recognizer -> recognizer -> recognizer
(p $orelse q) inp = unite (p inp) (q inp)

then :: recognizer -> recognizer -> recognizer
(p $then q) inp = apply_to_all q (p inp)

apply_to_all q [] = []
apply_to_all q (r:rs) = unite (q r) (apply_to_all q rs)

empty x = [x]

unite x y = mkset (x ++ y)

According to the approach, a recognizer is a function mapping an input string
to a list of outputs. The input is a sequence of tokens to be analyzed. Each entry
in the output list is a sequence of tokens yet to be processed. Using the notion
of “failure as a list of successes” (Wadler 1985) an empty output list signifies
that a recognizer has failed to recognize the input. Multiple entries in the output
occur when the input is ambiguous. In the examples in this paper it is assumed
that all tokens are single characters.

The simplest type of recognizer is one that recognizes a single token at the
beginning of a sequence of tokens. Such recognizers may be constructed using the
higher-order function term defined above. The following illustrates use of term
in the construction of a recognizer for the character ’c’. The empty list in the
second example signifies that c failed to recognize a token ’c’ at the beginning
of the input

c = term ’c’
c "cxyz" => ["xyz"]
c "xyz" => []

Alternate recognizers may be built using the higher-order function orelse as
defined above. When a recognizer p $orelse q is applied to an input inp, the
value returned is computed by uniting the results returned by the separate ap-
plication of p to inp and q to inp. The following illustrates use of orelse in
the construction of a recognizer c or d and the subsequent application of this
recognizer to three inputs.

c_or_d = c $orelse d
c_or_d "cxyz" => ["xyz"]
c_or_d "abc" => []

Monadic Memoization towards Correctness-Preserving Reduction of Search 77

Sequencing of recognizers is obtained through use of the higher-order function
then defined as above. When a recognizer p $then q is applied to an input inp,
the result returned is a list obtained by applying q to each of the results in the
list returned by p. The following illustrates use of then in the construction of
a recognizer c then d, and the subsequent application of c then d to two inputs:

c_then_d = c $then d
c_then_d "cdxy" => ["xy"]
c_then_d "cxyz" => []

The “empty” recognizer always succeeds and returns a singelton list contain-
ing the input. The unite operation removes duplicates in the results returned
by orelse and then. The example application given below illustrates use of the
recognizer s from the previous page, and shows that the prefixes of the input
‘‘aaa’’ can be successfully recognized in different ways. The empty string in
the output, denoted by "", corresponds to cases where the whole input ‘‘aaa’’
has been recognized as an s.

s "aaa" => ["","a","aa","aaa"]

Recognizers constructed in this way are easy to construct and are highly
modular, but have exponential time complexity.

8 Use of the State Monad
to Memoize Language Recognizers

The advantage of the proposed approach will now become apparent. In order to
memoize recognizers that are constructed using the method described above, we
simply rewrite the definitions of the combinators to use the state monad, change
the state (memotable) to be of type [([char],[([char], [[char]])])] to be
compatible with the input/output types of recognizers, and apply the memoize
function from the Fibonacci example.

stm * == state -> (*, state)

state == [([char],[([char], [[char]])])]
term2 c [] = unit2 []
term2 c (t:ts) = unit2 [ts], if t = c

= unit2 [] , otherwise
(p $orelse2 q) input

= p input $bind2 f
where
f a = q input $bind2 g

where
g b = unit2 (unite a b)

(p $then2 q) input = p input }bind2 f

78 Richard Frost

where
f a = apply_to_all2 q a

empty2 x = unit2 [x]
apply_to_all2 q [] = unit2 []
apply_to_all2 q (r:rs) = q r $bind2 f

where
f a = apply_to_all2 q rs $bind2 h

where
h b = unit2 (unite a b)

ms = memoize "ms" (a2 $then2 ms then2 ms) $orelse2 empty2
a = term2 ’a’

The memoized recognizer ms has worst-case cubic complexity (theoretically this
is as good as is possible) compared to the exponential complexity of the original
recognizer s:

s "aaaa" => ["","a","aa","aaa","aaaa"] time = 5879
s "aaaaaaaaaa"

=> ["","a","aa","aaa","aaaa","aaaaa","aaaaaa","aaaaaaa",
"aaaaaaaa","aaaaaaaaa","aaaaaaaaaa"] time = 1938151

s "aaaaaaaaaaaaaaaaaaaa" => ran out of space

ms "aaaaaaaaaa" [] => as above time = 43642
ms "aaaaaaaaaaaaaaaaaaaa" [] => correct result time = 388837

Notice that the structure of the definition of ms is the same as the original except
for application of the memoize function. The monad and the memo-table function
definitions are hidden from the programmer who is constructing the recognizer.
Notice also that the programmer can choose which parts of the recognizer to
memoize.

9 A Sketch of Proof of Preservation of Correctness

One of the advantages of the proposed approach is that the resulting memoized
programs are completely functional and, therefore, equational reasoning can be
used in their analysis. In particular, equational reasoning can be used to prove
that the memoization process is correct in the sense that termination properties
are preserved and that the memoized program returns the same results as the
original:

1. Preservation of termination properties can be proven by:
(a) Showing that the table size is bounded, that update and lookup ter-

minate, and therefore that the memoize function terminates for finite
input.

Monadic Memoization towards Correctness-Preserving Reduction of Search 79

(b) Showing that rewriting the program in monadic form does not affect
termination properties. For the recognition example, the technique of
abstract reduction, which Panitz (1996) developed and has already used
to prove termination of a sub-set of recognizers that can be built with the
combinators given in the paper, can be used to show that the monadic
form of the combinators have the same termination properties.

2. To prove that memoization does not change the results returned, we need to
show that the values computed in the monadic form of the program are the
same as those in the original, and that update and lookup do not corrupt
those values. Although not trivial, it is anticipated that equational reasoning
can be readily used to do this.

The resulting proofs apply to any program that is memoized using the tech-
nique described in this paper.

10 Concluding Comments

The approach described in this paper can be applied to other types of prob-
lem where memoization can be used to avoid reexamining already-visited parts
of the search space. Such problems include scheduling, planning, sub-sequence
analysis, pattern recognition, database query optimization, theorem proving,
computational physics, conformational search in crystallography, and many oth-
ers. Current work includes construction of the complete proof of preservation of
correctness, and investigation of the use of the technique in other search prob-
lems.

References

[1] Augusteijn, L. (1993) Functional Programming, Program Transformations and
Compiler Construction. Philips Research Laboratories. ISBN 90–74445–04–7.

[2] Burge, W.H. (1975) Recursive Programming Techniques. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts.

[3] Fairburn, J. (1986) Making form follow function: An exercise in functional pro-
gramming style. University of Cambridge Computer Laboratory Technical Report
No 89.

[4] Field, A. J. and Harrison, P.G. (1988) Functional Programming. Addison-Wesley
Publishing Company, Reading, Massachusetts.

[5] Frost, R.A. (2002) W/AGE The Windsor Attribute Grammar Programming En-
vironment. IEEE Symposia on Human Centric Computing Languages and Envi-
ronments HCC’2002 96–99.

[6] Frost, R.A. and Szydlowski, B. (1995) Memoizing purely-functional top-down
backtracking language processors. Science of Computer Programming” (27) 263
– 288.

[7] Frost, R.A. (1993) ‘Guarded attribute grammars’.Software Practice and Experi-
ence.23 (10) 1139–1156.

[8] Frost, R.A. (1992) Constructing programs as executable attribute grammars. The
Computer Journal 35 (4) 376 – 389.

80 Richard Frost

[9] Frost, R.A. and Launchbury, E. J. (1989) Constructing natural language inter-
preters in a lazy functional language’. The Computer Journal – Special edition on
Lazy Functional Programming, 32 (2) 108 – 121.

[10] Hudak, P., Wadler, P., Arvind, Boutel, B., Fairbairn, J., Fasel, J., Hammond,
K., Hughes, J., Johnsson, T., Kieburtz, D., Nikhil, R., Peyton Jones, S., Reeve,
M., Wise, D. and Young, J. (1992) Report on the programming language Haskell,
a non-strict, purely functional language, Version 1.2 ACM SIGPLAN Notices 27
(5).

[11] Hughes, R. J.M. (1985) Lazy memo functions. In proceedings. Conference on
Functional Programming and Computer Architecture Nancy, France, September
1985. Springer-Verlag Lecture Note Series 201, editors G. Goos and J. Hartmanis,
129 - 146.

[12] Johnson, M. (1995) Squibs and Discussions: Memoization in top-down parsing.
Computational Linguistics 21 (3) 405–417.

[13] Khoshnevisan, H. (1990) Efficient memo-table management strategies. Acta In-
formatica 28, 43–81.

[14] Koskimies, K. Lazy recursive descent parsing for modular language implementa-
tion. Software Practice and Experience, 20 (8) 749–772, 1990.

[15] Leermakers, R. (1993) The Functional Treatment of Parsing. Kluwer Academic
Publishers, ISBN 0–7923–9376–7.

[16] Michie, D. (1968) ‘Memo’ functions and machine learning. Nature 218 19 - 22.
[17] Moggi, E. (1989) Computational lambda-calculus and monads. IEEE Symposium

on Logic in Computer Science, Asilomar, California, June 1989, 14–23.
[18] Norvig, P. (1991) Techniques for automatic memoisation with applications to

context-free parsing. Computational Linguistics 17 (1) 91 - 98.
[19] Panitz (1996) Termination proofs for a lazy functional language by abstract in-

terpretation. citeseer.nj.nec.com/panitz96termination.html
[20] Turner, D. (1985) A lazy functional programming language with polymorphic

types. Proc. IFIP Int. Conf. on Functional Programmiong Languages and Com-
puter Architecture. Nancy, France. Springer Verlag Lecture Notes in Computer
Science 201.

[21] Wadler, P. (1985) How to replace failure by a list of successes, in P. Jouannaud
(ed.) Functional Programming Languages and Computer Architectures Lecture
Notes in Computer Science 201, Springer-Verlag, Heidelberg, 113.

[22] Wadler, P. (1990) Comprehending monads. ACM SIGPLAN/SIGACT/SIGART
Symposium on Lisp and Functional Programming, Nice, France, June 1990, 61–78.

[23] Wadler, P. (1995) Monads for functional programming, Proceedings of the Bastad
Spring School on Advanced Functional Programming, ed J. Jeuring and E. Meijer.
Springer Verlag Lecture Notes in Computer Science 925.

	Monadic Memoization towards Correctness-Preserving Reduction of Search
	Introduction
	The Need for Selective Memoization
	The Need for Pure Functionality?
	Memoization in a Pure-Functional Language
	The Need for a more Formal Technique
	Monadic Memoization
	Advantages of this Approach
	Structure of the Rest of the Paper

	Overview of Related Work
	Notation
	Rewriting the Fibonacci Program in Monadic Form -- The Identity Monad
	Adding a Counter to the Fibonacci Program -- The State Monad
	Memoizing the Fibonacci Program
	A Modular Top-Down Fully-Backtracking Language Recognizer
	Use of the State Monad to Memoize Language Recognizers
	A Sketch of Proof of Preservation of Correctness
	Concluding Comments
	References

